use std::cell::RefCell;
use std::collections::HashSet;
use serde::{Deserialize, Serialize};
use abstutil::{MapName, Timer};
use geom::{Bounds, Pt2D};
use crate::{Key, ScreenDims, ScreenPt, ScreenRectangle, UpdateType, UserInput};
const DRAG_THRESHOLD: f64 = 5.0;
const PAN_SPEED: f64 = 15.0;
const PANNING_THRESHOLD: f64 = 25.0;
pub struct Canvas {
pub cam_x: f64,
pub cam_y: f64,
pub cam_zoom: f64,
pub(crate) cursor: ScreenPt,
pub(crate) window_has_cursor: bool,
pub(crate) drag_canvas_from: Option<(ScreenPt, ScreenPt)>,
pub(crate) drag_just_ended: bool,
pub window_width: f64,
pub window_height: f64,
pub map_dims: (f64, f64),
pub invert_scroll: bool,
pub touchpad_to_move: bool,
pub edge_auto_panning: bool,
pub keys_to_pan: bool,
pub gui_scroll_speed: usize,
pub(crate) covered_areas: RefCell<Vec<ScreenRectangle>>,
pub(crate) keys_held: HashSet<Key>,
}
impl Canvas {
pub(crate) fn new(initial_dims: ScreenDims) -> Canvas {
Canvas {
cam_x: 0.0,
cam_y: 0.0,
cam_zoom: 1.0,
cursor: ScreenPt::new(0.0, 0.0),
window_has_cursor: true,
drag_canvas_from: None,
drag_just_ended: false,
window_width: initial_dims.width,
window_height: initial_dims.height,
map_dims: (0.0, 0.0),
invert_scroll: false,
touchpad_to_move: false,
edge_auto_panning: false,
keys_to_pan: false,
gui_scroll_speed: 5,
covered_areas: RefCell::new(Vec::new()),
keys_held: HashSet::new(),
}
}
pub fn min_zoom(&self) -> f64 {
let percent_window = 0.8;
(percent_window * self.window_width / self.map_dims.0)
.min(percent_window * self.window_height / self.map_dims.1)
}
pub(crate) fn handle_event(&mut self, input: &mut UserInput) -> Option<UpdateType> {
if self.get_cursor_in_map_space().is_some() {
if self.touchpad_to_move {
if let Some((scroll_x, scroll_y)) = input.get_mouse_scroll() {
if self.keys_held.contains(&Key::LeftControl) {
self.zoom(scroll_y, self.cursor);
} else {
self.cam_x += scroll_x * PAN_SPEED;
self.cam_y -= scroll_y * PAN_SPEED;
}
}
} else {
if input.left_mouse_button_pressed() {
self.drag_canvas_from = Some((self.get_cursor(), self.get_cursor()));
}
if let Some((_, scroll)) = input.get_mouse_scroll() {
self.zoom(scroll, self.cursor);
}
}
if self.keys_to_pan {
if input.pressed(Key::LeftArrow) {
self.cam_x -= PAN_SPEED;
}
if input.pressed(Key::RightArrow) {
self.cam_x += PAN_SPEED;
}
if input.pressed(Key::UpArrow) {
self.cam_y -= PAN_SPEED;
}
if input.pressed(Key::DownArrow) {
self.cam_y += PAN_SPEED;
}
if input.pressed(Key::Q) {
self.zoom(
1.0,
ScreenPt::new(self.window_width / 2.0, self.window_height / 2.0),
);
}
if input.pressed(Key::W) {
self.zoom(
-1.0,
ScreenPt::new(self.window_width / 2.0, self.window_height / 2.0),
);
}
}
}
if let Some((click, orig)) = self.drag_canvas_from {
let pt = self.get_cursor();
self.cam_x += click.x - pt.x;
self.cam_y += click.y - pt.y;
self.drag_canvas_from = Some((pt, orig));
if input.left_mouse_button_released() {
let (_, orig) = self.drag_canvas_from.take().unwrap();
let dist = ((pt.x - orig.x).powi(2) + (pt.y - orig.y).powi(2)).sqrt();
if dist > DRAG_THRESHOLD {
self.drag_just_ended = true;
}
}
} else if self.drag_just_ended {
self.drag_just_ended = false;
} else {
let cursor_screen_pt = self.get_cursor().to_pt();
let cursor_map_pt = self.screen_to_map(self.get_cursor());
let inner_bounds = self.get_inner_bounds();
let map_bounds = self.get_map_bounds();
if self.edge_auto_panning
&& !inner_bounds.contains(cursor_screen_pt)
&& map_bounds.contains(cursor_map_pt)
&& input.nonblocking_is_update_event().is_some()
{
let center_pt = self.center_to_screen_pt().to_pt();
let displacement_x = cursor_screen_pt.x() - center_pt.x();
let displacement_y = cursor_screen_pt.y() - center_pt.y();
let displacement_magnitude =
f64::sqrt(displacement_x.powf(2.0) + displacement_y.powf(2.0));
let displacement_unit_x = displacement_x / displacement_magnitude;
let displacement_unit_y = displacement_y / displacement_magnitude;
self.cam_x += displacement_unit_x * PAN_SPEED;
self.cam_y += displacement_unit_y * PAN_SPEED;
return Some(UpdateType::Pan);
}
}
None
}
fn zoom(&mut self, delta: f64, focus: ScreenPt) {
let old_zoom = self.cam_zoom;
self.cam_zoom = 1.1_f64
.powf(old_zoom.log(1.1) + delta)
.max(self.min_zoom())
.min(150.0);
self.cam_x = ((self.cam_zoom / old_zoom) * (focus.x + self.cam_x)) - focus.x;
self.cam_y = ((self.cam_zoom / old_zoom) * (focus.y + self.cam_y)) - focus.y;
}
pub(crate) fn start_drawing(&self) {
self.covered_areas.borrow_mut().clear();
}
pub fn mark_covered_area(&self, rect: ScreenRectangle) {
self.covered_areas.borrow_mut().push(rect);
}
pub fn get_cursor(&self) -> ScreenPt {
self.cursor
}
pub fn get_cursor_in_screen_space(&self) -> Option<ScreenPt> {
if self.window_has_cursor && self.get_cursor_in_map_space().is_none() {
Some(self.get_cursor())
} else {
None
}
}
pub fn get_cursor_in_map_space(&self) -> Option<Pt2D> {
if self.window_has_cursor {
let pt = self.get_cursor();
for rect in self.covered_areas.borrow().iter() {
if rect.contains(pt) {
return None;
}
}
Some(self.screen_to_map(pt))
} else {
None
}
}
pub fn screen_to_map(&self, pt: ScreenPt) -> Pt2D {
Pt2D::new(
(pt.x + self.cam_x) / self.cam_zoom,
(pt.y + self.cam_y) / self.cam_zoom,
)
}
pub fn center_to_screen_pt(&self) -> ScreenPt {
ScreenPt::new(self.window_width / 2.0, self.window_height / 2.0)
}
pub fn center_to_map_pt(&self) -> Pt2D {
self.screen_to_map(self.center_to_screen_pt())
}
pub fn center_on_map_pt(&mut self, pt: Pt2D) {
self.cam_x = (pt.x() * self.cam_zoom) - (self.window_width / 2.0);
self.cam_y = (pt.y() * self.cam_zoom) - (self.window_height / 2.0);
}
pub fn map_to_screen(&self, pt: Pt2D) -> ScreenPt {
ScreenPt::new(
(pt.x() * self.cam_zoom) - self.cam_x,
(pt.y() * self.cam_zoom) - self.cam_y,
)
}
fn get_inner_bounds(&self) -> Bounds {
let mut b = Bounds::new();
b.update(ScreenPt::new(PANNING_THRESHOLD, PANNING_THRESHOLD).to_pt());
b.update(
ScreenPt::new(
self.window_width - PANNING_THRESHOLD,
self.window_height - PANNING_THRESHOLD,
)
.to_pt(),
);
b
}
pub fn get_window_dims(&self) -> ScreenDims {
ScreenDims::new(self.window_width, self.window_height)
}
fn get_map_bounds(&self) -> Bounds {
let mut b = Bounds::new();
b.update(Pt2D::new(0.0, 0.0));
b.update(Pt2D::new(self.map_dims.0, self.map_dims.1));
b
}
pub fn get_screen_bounds(&self) -> Bounds {
let mut b = Bounds::new();
b.update(self.screen_to_map(ScreenPt::new(0.0, 0.0)));
b.update(self.screen_to_map(ScreenPt::new(self.window_width, self.window_height)));
b
}
pub fn save_camera_state(&self, name: &MapName) {
let state = CameraState {
cam_x: self.cam_x,
cam_y: self.cam_y,
cam_zoom: self.cam_zoom,
};
abstutil::write_json(abstutil::path_camera_state(name), &state);
}
pub fn load_camera_state(&mut self, name: &MapName) -> bool {
match abstutil::maybe_read_json::<CameraState>(
abstutil::path_camera_state(name),
&mut Timer::throwaway(),
) {
Ok(ref loaded) => {
self.cam_x = loaded.cam_x;
self.cam_y = loaded.cam_y;
self.cam_zoom = loaded.cam_zoom;
true
}
Err(_) => false,
}
}
pub(crate) fn align_window(
&self,
dims: ScreenDims,
horiz: HorizontalAlignment,
vert: VerticalAlignment,
) -> ScreenPt {
let x1 = match horiz {
HorizontalAlignment::Left => 0.0,
HorizontalAlignment::Center => (self.window_width - dims.width) / 2.0,
HorizontalAlignment::Right => self.window_width - dims.width,
HorizontalAlignment::Percent(pct) => pct * self.window_width,
HorizontalAlignment::Centered(x) => x - (dims.width / 2.0),
};
let y1 = match vert {
VerticalAlignment::Top => 0.0,
VerticalAlignment::Center => (self.window_height - dims.height) / 2.0,
VerticalAlignment::Bottom => self.window_height - dims.height,
VerticalAlignment::BottomAboveOSD => self.window_height - dims.height - 60.0,
VerticalAlignment::Percent(pct) => pct * self.window_height,
VerticalAlignment::Above(y) => y - dims.height,
VerticalAlignment::Below(y) => y,
};
ScreenPt::new(x1, y1)
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum HorizontalAlignment {
Left,
Center,
Right,
Percent(f64),
Centered(f64),
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum VerticalAlignment {
Top,
Center,
Bottom,
BottomAboveOSD,
Percent(f64),
Above(f64),
Below(f64),
}
#[derive(Serialize, Deserialize, Debug)]
pub struct CameraState {
cam_x: f64,
cam_y: f64,
cam_zoom: f64,
}