1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
use std::collections::BTreeSet;
use std::fmt;

use serde::{Deserialize, Serialize};

use abstutil::{deserialize_usize, serialize_usize, wraparound_get};
use geom::{Distance, Line, PolyLine, Polygon, Pt2D, Ring};

use crate::{
    osm, BusStopID, DirectedRoadID, Direction, IntersectionID, Map, MapConfig, Road, RoadID,
    TurnType,
};

/// From some manually audited cases in Seattle, the length of parallel street parking spots is a
/// bit different than the length in parking lots, so set a different value here.
pub const PARKING_LOT_SPOT_LENGTH: Distance = Distance::const_meters(6.4);

#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct LaneID(
    #[serde(
        serialize_with = "serialize_usize",
        deserialize_with = "deserialize_usize"
    )]
    pub usize,
);

impl fmt::Display for LaneID {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Lane #{}", self.0)
    }
}

#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
pub enum LaneType {
    Driving,
    Parking,
    Sidewalk,
    // Walkable like a Sidewalk, but very narrow. Used to model pedestrians walking on roads
    // without sidewalks.
    Shoulder,
    Biking,
    Bus,
    SharedLeftTurn,
    Construction,
    LightRail,
}

impl LaneType {
    pub fn is_for_moving_vehicles(self) -> bool {
        match self {
            LaneType::Driving => true,
            LaneType::Biking => true,
            LaneType::Bus => true,
            LaneType::Parking => false,
            LaneType::Sidewalk => false,
            LaneType::Shoulder => false,
            LaneType::SharedLeftTurn => false,
            LaneType::Construction => false,
            LaneType::LightRail => true,
        }
    }

    pub fn supports_any_movement(self) -> bool {
        match self {
            LaneType::Driving => true,
            LaneType::Biking => true,
            LaneType::Bus => true,
            LaneType::Parking => false,
            LaneType::Sidewalk => true,
            LaneType::Shoulder => true,
            LaneType::SharedLeftTurn => false,
            LaneType::Construction => false,
            LaneType::LightRail => true,
        }
    }

    pub fn describe(self) -> &'static str {
        match self {
            LaneType::Driving => "a general-purpose driving lane",
            LaneType::Biking => "a protected bike lane",
            LaneType::Bus => "a bus-only lane",
            LaneType::Parking => "an on-street parking lane",
            LaneType::Sidewalk => "a sidewalk",
            LaneType::Shoulder => "a shoulder",
            LaneType::SharedLeftTurn => "a shared left-turn lane",
            LaneType::Construction => "a lane that's closed for construction",
            LaneType::LightRail => "a light rail track",
        }
    }

    pub fn short_name(self) -> &'static str {
        match self {
            LaneType::Driving => "driving lane",
            LaneType::Biking => "bike lane",
            LaneType::Bus => "bus lane",
            LaneType::Parking => "parking lane",
            LaneType::Sidewalk => "sidewalk",
            LaneType::Shoulder => "shoulder",
            LaneType::SharedLeftTurn => "left-turn lane",
            LaneType::Construction => "construction",
            LaneType::LightRail => "light rail track",
        }
    }
}

/// A road segment is broken down into individual lanes, which have a LaneType.
#[derive(Serialize, Deserialize, Debug)]
pub struct Lane {
    pub id: LaneID,
    pub parent: RoadID,
    pub lane_type: LaneType,
    pub lane_center_pts: PolyLine,
    pub width: Distance,

    pub src_i: IntersectionID,
    pub dst_i: IntersectionID,

    /// Meaningless order
    pub bus_stops: BTreeSet<BusStopID>,

    /// {Cars, bikes} trying to start or end here might not be able to reach most lanes in the
    /// graph, because this is near a border.
    pub driving_blackhole: bool,
    pub biking_blackhole: bool,
}

impl Lane {
    // TODO most of these are wrappers; stop doing this?
    pub fn first_pt(&self) -> Pt2D {
        self.lane_center_pts.first_pt()
    }
    pub fn last_pt(&self) -> Pt2D {
        self.lane_center_pts.last_pt()
    }
    pub fn first_line(&self) -> Line {
        self.lane_center_pts.first_line()
    }
    pub fn last_line(&self) -> Line {
        self.lane_center_pts.last_line()
    }

    pub fn endpoint(&self, i: IntersectionID) -> Pt2D {
        if i == self.src_i {
            self.first_pt()
        } else if i == self.dst_i {
            self.last_pt()
        } else {
            panic!("{} isn't an endpoint of {}", i, self.id);
        }
    }

    /// pt2 will be endpoint
    pub fn end_line(&self, i: IntersectionID) -> Line {
        if i == self.src_i {
            self.first_line().reverse()
        } else if i == self.dst_i {
            self.last_line()
        } else {
            panic!("{} isn't an endpoint of {}", i, self.id);
        }
    }

    pub fn dist_along_of_point(&self, pt: Pt2D) -> Option<Distance> {
        self.lane_center_pts
            .dist_along_of_point(pt)
            .map(|(dist, _)| dist)
    }

    pub fn length(&self) -> Distance {
        self.lane_center_pts.length()
    }

    pub fn intersections(&self) -> Vec<IntersectionID> {
        // TODO I think we're assuming there are no loop lanes
        vec![self.src_i, self.dst_i]
    }

    // TODO different types for each lane type might be reasonable

    pub fn number_parking_spots(&self, cfg: &MapConfig) -> usize {
        assert_eq!(self.lane_type, LaneType::Parking);
        // No spots next to intersections
        let spots = (self.length() / cfg.street_parking_spot_length).floor() - 2.0;
        if spots >= 1.0 {
            spots as usize
        } else {
            0
        }
    }

    pub fn is_driving(&self) -> bool {
        self.lane_type == LaneType::Driving
    }

    pub fn is_biking(&self) -> bool {
        self.lane_type == LaneType::Biking
    }

    pub fn is_bus(&self) -> bool {
        self.lane_type == LaneType::Bus
    }

    pub fn is_walkable(&self) -> bool {
        self.lane_type == LaneType::Sidewalk || self.lane_type == LaneType::Shoulder
    }

    pub fn is_sidewalk(&self) -> bool {
        self.lane_type == LaneType::Sidewalk
    }

    pub fn is_shoulder(&self) -> bool {
        self.lane_type == LaneType::Shoulder
    }

    pub fn is_parking(&self) -> bool {
        self.lane_type == LaneType::Parking
    }

    pub fn is_light_rail(&self) -> bool {
        self.lane_type == LaneType::LightRail
    }

    // TODO Store this natively if this winds up being useful.
    pub fn get_directed_parent(&self, map: &Map) -> DirectedRoadID {
        let r = map.get_r(self.parent);
        DirectedRoadID {
            id: r.id,
            dir: r.dir(self.id),
        }
    }

    pub fn get_turn_restrictions(&self, road: &Road) -> Option<BTreeSet<TurnType>> {
        if !self.is_driving() {
            return None;
        }

        let dir = road.dir(self.id);
        let all = if dir == Direction::Fwd && road.osm_tags.contains_key(osm::ENDPT_FWD) {
            road.osm_tags
                .get("turn:lanes:forward")
                .or_else(|| road.osm_tags.get("turn:lanes"))?
        } else if dir == Direction::Back && road.osm_tags.contains_key(osm::ENDPT_BACK) {
            road.osm_tags.get("turn:lanes:backward")?
        } else {
            return None;
        };
        let parts: Vec<&str> = all.split('|').collect();
        // Verify the number of parts matches the road's lanes
        let lanes: Vec<LaneID> = road
            .children(dir)
            .into_iter()
            .filter(|(_, lt)| *lt == LaneType::Driving || *lt == LaneType::Bus)
            .map(|(id, _)| id)
            .collect();
        if parts.len() != lanes.len() {
            warn!("{}'s turn restrictions don't match the lanes", road.orig_id);
            return None;
        }
        // TODO More warnings if this fails
        let part = parts[lanes.iter().position(|l| *l == self.id)?];
        // TODO Probably the target lane should get marked as LaneType::Bus
        if part == "no" || part == "none" || part == "yes" || part == "psv" || part == "bus" {
            return None;
        }
        // Empty means no restrictions
        if part == "" {
            return None;
        }
        Some(
            part.split(';')
                .flat_map(|s| match s {
                    "left" | "left\\left" => vec![TurnType::Left],
                    "right" => vec![TurnType::Right],
                    // TODO What is blank supposed to mean? From few observed cases, same as through
                    "through" | "" => vec![TurnType::Straight],
                    // TODO Check this more carefully
                    "slight_right" | "slight right" | "merge_to_right" | "sharp_right" => {
                        vec![TurnType::Straight, TurnType::Right]
                    }
                    "slight_left" | "slight left" | "merge_to_left" | "sharp_left" => {
                        vec![TurnType::Straight, TurnType::Left]
                    }
                    "reverse" => {
                        // TODO We need TurnType::UTurn. Until then, u-turns usually show up as
                        // left turns.
                        vec![TurnType::Left]
                    }
                    s => {
                        warn!("Unknown turn restriction {}", s);
                        vec![]
                    }
                })
                .collect(),
        )
    }

    /// Starting from this lane, follow the lane's left edge to the intersection, continuing to
    /// "walk around the block" until we reach the starting point. This only makes sense for the
    /// outermost lanes on a road. Returns the polygon and all visited lanes.
    ///
    /// TODO This process currently fails for some starting positions; orienting is weird.
    pub fn trace_around_block(&self, map: &Map) -> Option<(Polygon, BTreeSet<LaneID>)> {
        let start = self.id;
        let mut pts = Vec::new();
        let mut current = start;
        let mut fwd = map.get_parent(start).lanes_ltr()[0].0 == start;
        let mut visited = BTreeSet::new();
        loop {
            let l = map.get_l(current);
            let lane_pts = if fwd {
                l.lane_center_pts.shift_left(l.width / 2.0)
            } else {
                l.lane_center_pts.reversed().shift_left(l.width / 2.0)
            }
            .unwrap()
            .into_points();
            if let Some(last_pt) = pts.last().cloned() {
                if last_pt != lane_pts[0] {
                    let last_i = if fwd { l.src_i } else { l.dst_i };
                    if let Some(pl) = map
                        .get_i(last_i)
                        .polygon
                        .clone()
                        .into_ring()
                        .get_shorter_slice_btwn(last_pt, lane_pts[0])
                    {
                        pts.extend(pl.into_points());
                    }
                }
            }
            pts.extend(lane_pts);
            // Imagine pointing down this lane to the intersection. Rotate left -- which road is
            // next?
            let i = if fwd { l.dst_i } else { l.src_i };
            // TODO Remove these debug statements entirely after stabilizing this
            //println!("{}, fwd={}, pointing to {}", current, fwd, i);
            let mut roads = map
                .get_i(i)
                .get_roads_sorted_by_incoming_angle(map.all_roads());
            roads.retain(|r| !map.get_r(*r).is_footway());
            let idx = roads.iter().position(|r| *r == l.parent).unwrap();
            // Get the next road counter-clockwise
            let next_road = map.get_r(*wraparound_get(&roads, (idx as isize) + 1));
            // Depending on if this road points to or from the intersection, get the left- or
            // right-most lane.
            let next_lane = if next_road.src_i == i {
                next_road.lanes_ltr()[0].0
            } else {
                next_road.lanes_ltr().last().unwrap().0
            };
            if next_lane == start {
                break;
            }
            if visited.contains(&current) {
                //println!("Loop, something's broken");
                return None;
            }
            visited.insert(current);
            current = next_lane;
            fwd = map.get_l(current).src_i == i;
        }
        pts.push(pts[0]);
        pts.dedup();
        Some((Ring::new(pts).ok()?.to_polygon(), visited))
    }
}