1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
use std::fmt;

use serde::{Deserialize, Serialize};

use geom::{Angle, Distance, PolyLine, Pt2D, Speed};

use crate::{LaneID, Map, TurnID};

/// Represents a specific point some distance along a lane.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct Position {
    // Don't let callers construct a Position directly, so it's easy to find callers of new().
    lane: LaneID,
    dist_along: Distance,
}

impl fmt::Display for Position {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Position({}, {})", self.lane, self.dist_along)
    }
}

impl Position {
    pub fn new(lane: LaneID, dist_along: Distance) -> Position {
        Position { lane, dist_along }
    }

    pub fn start(lane: LaneID) -> Position {
        Position {
            lane,
            dist_along: Distance::ZERO,
        }
    }

    pub fn end(lane: LaneID, map: &Map) -> Position {
        Position {
            lane,
            dist_along: map.get_l(lane).length(),
        }
    }

    pub fn lane(&self) -> LaneID {
        self.lane
    }

    pub fn dist_along(&self) -> Distance {
        self.dist_along
    }

    pub fn pt(&self, map: &Map) -> Pt2D {
        match map
            .get_l(self.lane)
            .lane_center_pts
            .dist_along(self.dist_along)
        {
            Ok((pt, _)) => pt,
            Err(err) => panic!("{} invalid: {}", self, err),
        }
    }

    pub fn pt_and_angle(&self, map: &Map) -> (Pt2D, Angle) {
        match map
            .get_l(self.lane)
            .lane_center_pts
            .dist_along(self.dist_along)
        {
            Ok(pair) => pair,
            Err(err) => panic!("{} invalid: {}", self, err),
        }
    }

    pub fn equiv_pos(&self, lane: LaneID, map: &Map) -> Position {
        self.equiv_pos_for_long_object(lane, Distance::ZERO, map)
    }
    pub fn equiv_pos_for_long_object(
        &self,
        lane: LaneID,
        our_len: Distance,
        map: &Map,
    ) -> Position {
        let r = map.get_parent(lane);
        assert_eq!(map.get_l(self.lane).parent, r.id);

        // TODO Project perpendicular
        let len = map.get_l(lane).length();
        // The two lanes may be on opposite sides of the road; this often happens on one-ways with
        // sidewalks on both sides.
        if r.dir(lane) == r.dir(self.lane) {
            Position::new(lane, self.dist_along.min(len))
        } else {
            Position::new(
                lane,
                // TODO I don't understand what this is doing anymore in the one case, revisit
                (len - self.dist_along + our_len)
                    .max(Distance::ZERO)
                    .min(len),
            )
        }
    }
    pub fn min_dist(mut self, dist_along: Distance, map: &Map) -> Option<Position> {
        if self.dist_along >= dist_along {
            return Some(self);
        }
        if map.get_l(self.lane).length() < dist_along {
            return None;
        }
        self.dist_along = dist_along;
        Some(self)
    }
    pub fn buffer_dist(mut self, buffer: Distance, map: &Map) -> Option<Position> {
        let len = map.get_l(self.lane).length();
        if len <= buffer * 2.0 {
            return None;
        }
        self.dist_along = self.dist_along.max(buffer).min(len - buffer);
        Some(self)
    }
}

/// Either a lane or a turn, where most movement happens.
// TODO Consider adding building and parking lot driveways here.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
pub enum Traversable {
    Lane(LaneID),
    Turn(TurnID),
}

impl fmt::Display for Traversable {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            Traversable::Lane(id) => write!(f, "Traversable::Lane({})", id.0),
            Traversable::Turn(id) => write!(
                f,
                "Traversable::Turn({}, {}, {})",
                id.src, id.dst, id.parent
            ),
        }
    }
}

impl Traversable {
    pub fn as_lane(&self) -> LaneID {
        match *self {
            Traversable::Lane(id) => id,
            Traversable::Turn(_) => panic!("not a lane"),
        }
    }

    pub fn as_turn(&self) -> TurnID {
        match *self {
            Traversable::Turn(id) => id,
            Traversable::Lane(_) => panic!("not a turn"),
        }
    }

    pub fn maybe_turn(&self) -> Option<TurnID> {
        match *self {
            Traversable::Turn(id) => Some(id),
            Traversable::Lane(_) => None,
        }
    }

    pub fn maybe_lane(&self) -> Option<LaneID> {
        match *self {
            Traversable::Turn(_) => None,
            Traversable::Lane(id) => Some(id),
        }
    }

    // TODO Just expose the PolyLine instead of all these layers of helpers
    pub fn length(&self, map: &Map) -> Distance {
        match *self {
            Traversable::Lane(id) => map.get_l(id).length(),
            Traversable::Turn(id) => map.get_t(id).geom.length(),
        }
    }

    pub fn dist_along(&self, dist: Distance, map: &Map) -> Result<(Pt2D, Angle), String> {
        match *self {
            Traversable::Lane(id) => map.get_l(id).lane_center_pts.dist_along(dist),
            Traversable::Turn(id) => map.get_t(id).geom.dist_along(dist),
        }
    }

    pub fn slice(
        &self,
        start: Distance,
        end: Distance,
        map: &Map,
    ) -> Result<(PolyLine, Distance), String> {
        match *self {
            Traversable::Lane(id) => map.get_l(id).lane_center_pts.slice(start, end),
            Traversable::Turn(id) => map.get_t(id).geom.slice(start, end),
        }
    }

    pub fn exact_slice(&self, start: Distance, end: Distance, map: &Map) -> PolyLine {
        match *self {
            Traversable::Lane(id) => map.get_l(id).lane_center_pts.exact_slice(start, end),
            Traversable::Turn(id) => map.get_t(id).geom.exact_slice(start, end),
        }
    }

    pub fn speed_limit(&self, map: &Map) -> Speed {
        match *self {
            Traversable::Lane(id) => map.get_parent(id).speed_limit,
            Traversable::Turn(id) => map.get_parent(id.dst).speed_limit,
        }
    }

    pub fn get_zorder(&self, map: &Map) -> isize {
        match *self {
            Traversable::Lane(id) => map.get_parent(id).zorder,
            Traversable::Turn(id) => map.get_i(id.parent).get_zorder(map),
        }
    }
}