1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
use geom::{Distance, PolyLine, Pt2D, Ring, EPSILON_DIST};
use crate::{
Direction, DrivingSide, Intersection, IntersectionID, Lane, LaneID, Map, Turn, TurnID, TurnType,
};
pub fn make_walking_turns(map: &Map, i: &Intersection) -> Vec<Turn> {
let driving_side = map.config.driving_side;
let mut lanes: Vec<Option<&Lane>> = Vec::new();
let mut sorted_roads = i.get_roads_sorted_by_incoming_angle(map);
if driving_side == DrivingSide::Left {
sorted_roads.reverse();
}
for r in sorted_roads {
let road = map.get_r(r);
let mut fwd = None;
let mut back = None;
for l in &road.lanes {
if l.lane_type.is_walkable() {
if l.dir == Direction::Fwd {
fwd = Some(l);
} else {
back = Some(l);
}
}
}
let (in_lane, out_lane) = if road.src_i == i.id {
(back, fwd)
} else {
(fwd, back)
};
if map.get_r(r).is_footway() {
if in_lane.is_some() {
lanes.push(in_lane);
}
if out_lane.is_some() {
lanes.push(out_lane);
}
} else {
lanes.push(in_lane);
lanes.push(out_lane);
}
}
if lanes.iter().filter(|l| l.is_some()).count() <= 1 {
return Vec::new();
}
if i.is_deadend_for_everyone() {
let (l1, l2) = (lanes[0].unwrap(), lanes[1].unwrap());
return vec![Turn {
id: turn_id(i.id, l1.id, l2.id),
turn_type: TurnType::SharedSidewalkCorner,
geom: make_shared_sidewalk_corner(i, l1, l2),
}];
}
while lanes[0].is_none() {
lanes.rotate_left(1);
}
let mut result: Vec<Turn> = Vec::new();
let mut from: Option<&Lane> = lanes[0];
let mut adj = true;
for l in lanes.iter().skip(1).chain(lanes.iter().take(1)) {
if from.is_none() {
from = *l;
adj = true;
continue;
}
let l1 = from.unwrap();
if l.is_none() {
adj = false;
continue;
}
let l2 = l.unwrap();
if adj && l1.id.road != l2.id.road {
result.push(Turn {
id: turn_id(i.id, l1.id, l2.id),
turn_type: TurnType::SharedSidewalkCorner,
geom: make_shared_sidewalk_corner(i, l1, l2),
});
from = Some(l2);
} else {
result.push(Turn {
id: turn_id(i.id, l1.id, l2.id),
turn_type: TurnType::Crosswalk,
geom: make_crosswalk(i, l1, l2),
});
from = Some(l2);
adj = true;
}
}
match result
.iter()
.filter(|t| t.turn_type == TurnType::Crosswalk)
.count()
{
1 | 2 => {
result.remove(
result
.iter()
.position(|t| t.turn_type == TurnType::Crosswalk)
.unwrap(),
);
}
_ => {}
}
result
}
pub fn filter_turns(mut input: Vec<Turn>, map: &Map, i: &Intersection) -> Vec<Turn> {
for r in &i.roads {
if map.get_r(*r).is_extremely_short() {
input.retain(|t| {
!(t.id.src.road == *r && t.id.dst.road == *r && t.turn_type.pedestrian_crossing())
});
}
}
for turn in &mut input {
if let Some(dr) = turn.crosswalk_over_road(map) {
let road = map.get_r(dr.road);
let keep = if dr.dir == Direction::Fwd {
road.crosswalk_forward
} else {
road.crosswalk_backward
};
if !keep {
turn.turn_type = TurnType::UnmarkedCrossing;
}
} else if turn.turn_type.pedestrian_crossing() {
for l in [turn.id.src, turn.id.dst] {
let road = map.get_parent(l);
if !road.crosswalk_forward || !road.crosswalk_backward {
turn.turn_type = TurnType::UnmarkedCrossing;
}
}
}
}
input
}
fn make_crosswalk(i: &Intersection, l1: &Lane, l2: &Lane) -> PolyLine {
let l1_line = l1.end_line(i.id);
let l2_line = l2.end_line(i.id);
PolyLine::deduping_new(vec![
l1_line.pt2(),
l1_line.unbounded_dist_along(
l1_line.length()
+ if i.is_degenerate() {
Distance::const_meters(2.5)
} else {
l1.width / 2.0
},
),
l2_line.unbounded_dist_along(
l2_line.length()
+ if i.is_degenerate() {
Distance::const_meters(2.5)
} else {
l2.width / 2.0
},
),
l2_line.pt2(),
])
.unwrap_or_else(|_| baseline_geometry(l1.endpoint(i.id), l2.endpoint(i.id)))
}
fn make_shared_sidewalk_corner(i: &Intersection, l1: &Lane, l2: &Lane) -> PolyLine {
let baseline = baseline_geometry(l1.endpoint(i.id), l2.endpoint(i.id));
let dir = if i
.polygon
.center()
.angle_to(l1.endpoint(i.id))
.simple_shortest_rotation_towards(i.polygon.center().angle_to(l2.endpoint(i.id)))
> 0.0
{
1.0
} else {
-1.0
} * if i.is_deadend_for_everyone() {
-1.0
} else {
1.0
};
let corner1 = l1
.end_line(i.id)
.shift_either_direction(dir * l1.width / 2.0)
.pt2();
let corner2 = l2
.end_line(i.id)
.shift_either_direction(-dir * l2.width / 2.0)
.pt2();
if false {
return Ring::must_new(i.polygon.points().clone())
.get_shorter_slice_btwn(corner1, corner2)
.unwrap();
}
let mut pts_between = vec![l2.endpoint(i.id)];
let mut i_pts = i.polygon.points().clone();
i_pts.pop();
if dir < 0.0 {
i_pts.reverse();
}
for _ in 0..i_pts.len() {
if i_pts[0].approx_eq(corner2, Distance::meters(0.5)) {
break;
}
i_pts.rotate_left(1);
}
for idx in 0..i_pts.len() {
if i_pts[idx].approx_eq(corner1, Distance::meters(0.5)) {
i_pts.truncate(idx + 1);
break;
}
}
if i_pts.len() < 2 {
return baseline;
}
if let Ok(pl) =
PolyLine::must_new(i_pts).shift_either_direction(dir * l1.width.min(l2.width) / 2.0)
{
pts_between.extend(pl.points().iter().take(pl.points().len() - 1).skip(1));
} else {
warn!(
"SharedSidewalkCorner between {} and {} has weird collapsing geometry, so \
just doing straight line",
l1.id, l2.id
);
return baseline;
}
pts_between.push(l1.endpoint(i.id));
pts_between.dedup();
pts_between.reverse();
if abstutil::contains_duplicates(
&pts_between
.iter()
.map(|pt| pt.to_hashable())
.collect::<Vec<_>>(),
) || pts_between.len() < 2
{
warn!(
"SharedSidewalkCorner between {} and {} has weird duplicate geometry, so just doing \
straight line",
l1.id, l2.id
);
return baseline;
}
let result = PolyLine::must_new(pts_between);
if result.length() > 10.0 * baseline.length() {
warn!(
"SharedSidewalkCorner between {} and {} explodes to {} long, so just doing straight \
line",
l1.id,
l2.id,
result.length()
);
return baseline;
}
result
}
fn baseline_geometry(pt1: Pt2D, pt2: Pt2D) -> PolyLine {
PolyLine::new(vec![pt1, pt2]).unwrap_or_else(|_| {
PolyLine::must_new(vec![
pt1,
pt1.offset(EPSILON_DIST.inner_meters(), EPSILON_DIST.inner_meters()),
])
})
}
fn turn_id(parent: IntersectionID, src: LaneID, dst: LaneID) -> TurnID {
TurnID { parent, src, dst }
}