1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
use std::collections::{HashSet, VecDeque};

use geom::{Bounds, Distance, Polygon};
use map_gui::tools::Grid;
use map_model::Map;
use widgetry::{Color, GeomBatch};

use super::Neighborhood;

lazy_static::lazy_static! {
    static ref COLORS: [Color; 6] = [
        Color::BLUE,
        Color::YELLOW,
        Color::hex("#3CAEA3"),
        Color::PURPLE,
        Color::PINK,
        Color::ORANGE,
    ];
}
const CAR_FREE_COLOR: Color = Color::GREEN;
const DISCONNECTED_COLOR: Color = Color::RED;

const RESOLUTION_M: f64 = 10.0;

pub struct RenderCells {
    polygons_per_cell: Vec<Vec<Polygon>>,
    /// Colors per cell, such that adjacent cells are colored differently
    pub colors: Vec<Color>,
}

struct RenderCellsBuilder {
    /// The grid only covers the boundary polygon of the neighborhood. The values are cell indices,
    /// and `Some(num_cells)` marks the boundary of the neighborhood.
    grid: Grid<Option<usize>>,
    colors: Vec<Color>,
    /// Bounds of the neighborhood boundary polygon
    bounds: Bounds,

    boundary_polygon: Polygon,
}

impl RenderCells {
    /// Partition a neighborhood's boundary polygon based on the cells. This discretizes space into
    /// a grid, and then extracts a polygon from the raster. The results don't look perfect, but
    /// it's fast.
    pub fn new(map: &Map, neighborhood: &Neighborhood) -> RenderCells {
        RenderCellsBuilder::new(map, neighborhood).finalize()
    }

    // TODO It'd look nicer to render the cells "underneath" the roads and intersections, at the
    // layer where areas are shown now
    pub fn draw(&self) -> GeomBatch {
        let mut batch = GeomBatch::new();
        for (color, polygons) in self.colors.iter().zip(self.polygons_per_cell.iter()) {
            for poly in polygons {
                batch.push(color.alpha(0.5), poly.clone());
            }
        }
        batch
    }

    /// Per cell, convert all polygons to a `geo::MultiPolygon`. Leave the coordinate system as map-space.
    pub fn to_multipolygons(&self) -> Vec<geo::MultiPolygon<f64>> {
        self.polygons_per_cell
            .clone()
            .into_iter()
            .map(Polygon::union_all_into_multipolygon)
            .collect()
    }
}

impl RenderCellsBuilder {
    fn new(map: &Map, neighborhood: &Neighborhood) -> RenderCellsBuilder {
        let boundary_polygon = neighborhood
            .orig_perimeter
            .clone()
            .to_block(map)
            .unwrap()
            .polygon;
        // Make a 2D grid covering the polygon. Each tile in the grid contains a cell index, which
        // will become a color by the end. None means no cell is assigned yet.
        let bounds = boundary_polygon.get_bounds();
        let mut grid: Grid<Option<usize>> = Grid::new(
            (bounds.width() / RESOLUTION_M).ceil() as usize,
            (bounds.height() / RESOLUTION_M).ceil() as usize,
            None,
        );

        // Initially fill out the grid based on the roads in each cell
        for (cell_idx, cell) in neighborhood.cells.iter().enumerate() {
            for (r, interval) in &cell.roads {
                let road = map.get_r(*r);
                // Walk along the center line. We could look at the road's thickness and fill out
                // points based on that, but the diffusion should take care of it.
                for (pt, _) in road
                    .center_pts
                    .exact_slice(interval.start, interval.end)
                    .step_along(Distance::meters(RESOLUTION_M / 2.0), Distance::ZERO)
                {
                    let grid_idx = grid.idx(
                        ((pt.x() - bounds.min_x) / RESOLUTION_M) as usize,
                        ((pt.y() - bounds.min_y) / RESOLUTION_M) as usize,
                    );
                    // Due to tunnels/bridges, sometimes a road belongs to a neighborhood, but
                    // leaks outside the neighborhood's boundary. Avoid crashing. The real fix is
                    // to better define boundaries in the face of z-order changes.
                    //
                    // Example is https://www.openstreetmap.org/way/87298633
                    if grid_idx >= grid.data.len() {
                        warn!(
                            "{} leaks outside its neighborhood's boundary polygon, near {}",
                            road.id, pt
                        );
                        continue;
                    }

                    // If roads from two different cells are close enough to clobber originally, oh
                    // well?
                    grid.data[grid_idx] = Some(cell_idx);
                }
            }
        }
        // Also mark the boundary polygon, so we can prevent the diffusion from "leaking" outside
        // the area. The grid covers the rectangular bounds of the polygon. Rather than make an
        // enum with 3 cases, just assign a new index to mean "boundary."
        let boundary_marker = neighborhood.cells.len();
        for (pt, _) in
            geom::PolyLine::unchecked_new(boundary_polygon.clone().into_ring().into_points())
                .step_along(Distance::meters(RESOLUTION_M / 2.0), Distance::ZERO)
        {
            // TODO Refactor helpers to transform between map-space and the grid tiles. Possibly
            // Grid should know about this.
            let grid_idx = grid.idx(
                ((pt.x() - bounds.min_x) / RESOLUTION_M) as usize,
                ((pt.y() - bounds.min_y) / RESOLUTION_M) as usize,
            );
            grid.data[grid_idx] = Some(boundary_marker);
        }

        let adjacencies = diffusion(&mut grid, boundary_marker);
        let mut cell_colors = color_cells(neighborhood.cells.len(), adjacencies);

        // Color car-free cells in a special way
        for (idx, cell) in neighborhood.cells.iter().enumerate() {
            if cell.car_free {
                cell_colors[idx] = CAR_FREE_COLOR;
            } else if cell.is_disconnected() {
                cell_colors[idx] = DISCONNECTED_COLOR;
            }
        }

        RenderCellsBuilder {
            grid,
            colors: cell_colors,
            bounds,

            boundary_polygon,
        }
    }

    fn finalize(self) -> RenderCells {
        let mut result = RenderCells {
            polygons_per_cell: Vec::new(),
            colors: Vec::new(),
        };

        for (idx, color) in self.colors.into_iter().enumerate() {
            // contour will find where the grid is >= a threshold value. The main grid has one
            // number per cell, so we can't directly use it -- the area >= some cell index is
            // meaningless. Per cell, make a new grid that just has that cell.
            let grid: Grid<f64> = Grid {
                width: self.grid.width,
                height: self.grid.height,
                data: self
                    .grid
                    .data
                    .iter()
                    .map(
                        |maybe_cell| {
                            if maybe_cell == &Some(idx) {
                                1.0
                            } else {
                                0.0
                            }
                        },
                    )
                    .collect(),
            };

            let smooth = false;
            let c = contour::ContourBuilder::new(grid.width as u32, grid.height as u32, smooth);
            let thresholds = vec![1.0];

            let mut cell_polygons = Vec::new();
            for feature in c.contours(&grid.data, &thresholds).unwrap() {
                match feature.geometry.unwrap().value {
                    geojson::Value::MultiPolygon(polygons) => {
                        for p in polygons {
                            if let Ok(poly) = Polygon::from_geojson(&p) {
                                cell_polygons.push(
                                    poly.scale(RESOLUTION_M)
                                        .translate(self.bounds.min_x, self.bounds.min_y),
                                );
                            }
                        }
                    }
                    _ => unreachable!(),
                }
            }

            // Sometimes one cell "leaks" out of the neighborhood boundary. Not sure why. But we
            // can just clip the result.
            let mut clipped = Vec::new();
            for p in cell_polygons {
                clipped.extend(p.intersection(&self.boundary_polygon));
            }

            result.polygons_per_cell.push(clipped);
            result.colors.push(color);
        }

        result
    }
}

/// Returns a set of adjacent indices. The pairs are symmetric -- (x, y) and (y, x) will both be
/// populated. Adjacency with boundary_marker doesn't count.
fn diffusion(grid: &mut Grid<Option<usize>>, boundary_marker: usize) -> HashSet<(usize, usize)> {
    // Grid indices to propagate
    let mut queue: VecDeque<usize> = VecDeque::new();

    // Initially seed the queue with all colored tiles
    for (idx, value) in grid.data.iter().enumerate() {
        if let Some(x) = value {
            // Don't expand the boundary tiles
            if *x != boundary_marker {
                queue.push_back(idx);
            }
        }
    }

    let mut adjacencies = HashSet::new();

    while !queue.is_empty() {
        let current_idx = queue.pop_front().unwrap();
        let current_color = grid.data[current_idx].unwrap();
        let (current_x, current_y) = grid.xy(current_idx);
        // Don't flood to diagonal neighbors. That would usually result in "leaking" out past the
        // boundary tiles when the boundary polygon isn't axis-aligned.
        // TODO But this still does "leak" out sometimes -- the cell covering 22nd/Lynn, for
        // example.
        for (next_x, next_y) in grid.orthogonal_neighbors(current_x, current_y) {
            let next_idx = grid.idx(next_x, next_y);
            if let Some(prev_color) = grid.data[next_idx] {
                // If the color doesn't match our current_color, we've found the border between two
                // cells.
                if current_color != prev_color
                    && current_color != boundary_marker
                    && prev_color != boundary_marker
                {
                    adjacencies.insert((current_color, prev_color));
                    adjacencies.insert((prev_color, current_color));
                }
                // If a color has been assigned, don't flood any further.
            } else {
                grid.data[next_idx] = Some(current_color);
                queue.push_back(next_idx);
            }
        }
    }

    adjacencies
}

fn color_cells(num_cells: usize, adjacencies: HashSet<(usize, usize)>) -> Vec<Color> {
    // This is the same greedy logic as Perimeter::calculate_coloring
    let mut assigned_colors = Vec::new();
    for this_idx in 0..num_cells {
        let mut available_colors: Vec<bool> = std::iter::repeat(true).take(COLORS.len()).collect();
        // Find all neighbors
        for other_idx in 0..num_cells {
            if adjacencies.contains(&(this_idx, other_idx)) {
                // We assign colors in order, so any neighbor index smaller than us has been
                // chosen
                if other_idx < this_idx {
                    available_colors[assigned_colors[other_idx]] = false;
                }
            }
        }
        if let Some(color) = available_colors.iter().position(|x| *x) {
            assigned_colors.push(color);
        } else {
            warn!("color_cells ran out of colors");
            assigned_colors.push(0);
        }
    }
    assigned_colors.into_iter().map(|idx| COLORS[idx]).collect()
}