1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
use std::cmp::Ordering;
use std::collections::{BinaryHeap, HashMap, HashSet};

use abstutil::MultiMap;
use geom::{Duration, Speed};

use crate::connectivity::Spot;
use crate::pathfind::{zone_cost, WalkingNode};
use crate::{BuildingID, Lane, LaneType, Map, PathConstraints, PathStep};

#[derive(Clone)]
pub struct WalkingOptions {
    /// If true, allow walking on shoulders.
    pub allow_shoulders: bool,
    pub walking_speed: Speed,
}

impl WalkingOptions {
    pub fn default() -> WalkingOptions {
        WalkingOptions {
            allow_shoulders: true,
            walking_speed: WalkingOptions::default_speed(),
        }
    }

    pub fn common_speeds() -> Vec<(&'static str, Speed)> {
        vec![
            ("3 mph (average for an adult)", Speed::miles_per_hour(3.0)),
            ("1 mph (manual wheelchair)", Speed::miles_per_hour(1.0)),
            ("5 mph (moderate jog)", Speed::miles_per_hour(5.0)),
        ]
    }

    pub fn default_speed() -> Speed {
        WalkingOptions::common_speeds()[0].1
    }
}

#[derive(PartialEq, Eq)]
struct Item {
    cost: Duration,
    node: WalkingNode,
}
impl PartialOrd for Item {
    fn partial_cmp(&self, other: &Item) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Item {
    fn cmp(&self, other: &Item) -> Ordering {
        // BinaryHeap is a max-heap, so reverse the comparison to get smallest times first.
        let ord = other.cost.cmp(&self.cost);
        if ord != Ordering::Equal {
            return ord;
        }
        self.node.cmp(&other.node)
    }
}

/// Starting from some initial buildings, calculate the cost to all others. If a destination isn't
/// reachable, it won't be included in the results. Ignore results greater than the time_limit
/// away.
///
/// If all of the start buildings are on the shoulder of a road and `!opts.allow_shoulders`, then
/// the results will always be empty.
pub fn all_walking_costs_from(
    map: &Map,
    starts: Vec<Spot>,
    time_limit: Duration,
    opts: WalkingOptions,
) -> HashMap<BuildingID, Duration> {
    let mut queue: BinaryHeap<Item> = BinaryHeap::new();

    for spot in starts {
        match spot {
            Spot::Building(b_id) => {
                queue.push(Item {
                    cost: Duration::ZERO,
                    node: WalkingNode::closest(map.get_b(b_id).sidewalk_pos, map),
                });
            }
            Spot::Border(i_id) => {
                let intersection = map.get_i(i_id);
                let incoming_lanes = intersection.incoming_lanes.clone();
                let mut outgoing_lanes = intersection.outgoing_lanes.clone();
                let mut all_lanes = incoming_lanes;
                all_lanes.append(&mut outgoing_lanes);
                let walkable_lanes: Vec<&Lane> = all_lanes
                    .into_iter()
                    .map(|l_id| map.get_l(l_id))
                    .filter(|l| l.is_walkable())
                    .collect();
                for lane in walkable_lanes {
                    queue.push(Item {
                        cost: Duration::ZERO,
                        node: WalkingNode::SidewalkEndpoint(
                            lane.get_directed_parent(),
                            lane.src_i == i_id,
                        ),
                    });
                }
            }
            Spot::DirectedRoad(dr) => {
                // Start from either end
                queue.push(Item {
                    cost: Duration::ZERO,
                    node: WalkingNode::SidewalkEndpoint(dr, false),
                });
                queue.push(Item {
                    cost: Duration::ZERO,
                    node: WalkingNode::SidewalkEndpoint(dr, true),
                });
            }
        }
    }

    if !opts.allow_shoulders {
        let mut shoulder_endpoint = Vec::new();
        for q in &queue {
            if let WalkingNode::SidewalkEndpoint(dir_r, _) = q.node {
                for lane in &map.get_r(dir_r.id).lanes {
                    shoulder_endpoint.push(lane.lane_type == LaneType::Shoulder);
                }
            }
        }
        if shoulder_endpoint.into_iter().all(|x| x) {
            return HashMap::new();
        }
    }

    let mut sidewalk_to_bldgs = MultiMap::new();
    for b in map.all_buildings() {
        sidewalk_to_bldgs.insert(b.sidewalk(), b.id);
    }

    let mut results = HashMap::new();

    let mut visited_nodes = HashSet::new();
    while let Some(current) = queue.pop() {
        if visited_nodes.contains(&current.node) {
            continue;
        }
        if current.cost > time_limit {
            continue;
        }
        visited_nodes.insert(current.node);

        let (r, is_dst_i) = match current.node {
            WalkingNode::SidewalkEndpoint(r, is_dst_i) => (r, is_dst_i),
            _ => unreachable!(),
        };
        let lane = map.get_l(r.must_get_sidewalk(map));
        // Cross the lane
        if opts.allow_shoulders || lane.lane_type != LaneType::Shoulder {
            let sidewalk_len = lane.length();
            let step = if is_dst_i {
                PathStep::ContraflowLane(lane.id)
            } else {
                PathStep::Lane(lane.id)
            };
            let speed =
                step.max_speed_along(Some(opts.walking_speed), PathConstraints::Pedestrian, map);
            let cross_to_node = WalkingNode::SidewalkEndpoint(r, !is_dst_i);

            // We're crossing the sidewalk from one end to the other. If we haven't already found a
            // shorter path to the other end of this sidewalk, then fill out the exact distance to
            // each building. We need to know the direction along the sidewalk we're moving to fill
            // this out properly, so that's why the order of graph nodes visited matters and we're
            // doing this work here.
            if !visited_nodes.contains(&cross_to_node) {
                for b in sidewalk_to_bldgs.get(lane.id) {
                    let bldg_dist_along = map.get_b(*b).sidewalk_pos.dist_along();
                    let dist_to_bldg = if is_dst_i {
                        // Crossing from the end of the sidewalk to the beginning
                        sidewalk_len - bldg_dist_along
                    } else {
                        bldg_dist_along
                    };
                    let bldg_cost = current.cost + dist_to_bldg / speed;
                    if bldg_cost <= time_limit {
                        results.insert(*b, bldg_cost);
                    }
                }

                queue.push(Item {
                    cost: current.cost + sidewalk_len / speed,
                    node: cross_to_node,
                });
            }
        }
        // All turns from the lane
        for turn in map.get_turns_for(lane.id, PathConstraints::Pedestrian) {
            if (turn.id.parent == lane.dst_i) != is_dst_i {
                continue;
            }
            queue.push(Item {
                cost: current.cost
                    + turn.geom.length()
                        / PathStep::Turn(turn.id).max_speed_along(
                            Some(opts.walking_speed),
                            PathConstraints::Pedestrian,
                            map,
                        )
                    + zone_cost(turn.id.to_movement(map), PathConstraints::Pedestrian, map),
                node: WalkingNode::SidewalkEndpoint(
                    map.get_l(turn.id.dst).get_directed_parent(),
                    map.get_l(turn.id.dst).dst_i == turn.id.parent,
                ),
            });
        }
    }

    results
}