1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
use std::cmp::Ordering;
use std::collections::{BinaryHeap, HashMap, HashSet};
use abstutil::MultiMap;
use geom::{Duration, Speed};
use crate::connectivity::Spot;
use crate::pathfind::{zone_cost, WalkingNode};
use crate::{BuildingID, Lane, LaneType, Map, PathConstraints, PathStep};
#[derive(Clone)]
pub struct WalkingOptions {
pub allow_shoulders: bool,
pub walking_speed: Speed,
}
impl WalkingOptions {
pub fn default() -> WalkingOptions {
WalkingOptions {
allow_shoulders: true,
walking_speed: WalkingOptions::default_speed(),
}
}
pub fn common_speeds() -> Vec<(&'static str, Speed)> {
vec![
("3 mph (average for an adult)", Speed::miles_per_hour(3.0)),
("1 mph (manual wheelchair)", Speed::miles_per_hour(1.0)),
("5 mph (moderate jog)", Speed::miles_per_hour(5.0)),
]
}
pub fn default_speed() -> Speed {
WalkingOptions::common_speeds()[0].1
}
}
#[derive(PartialEq, Eq)]
struct Item {
cost: Duration,
node: WalkingNode,
}
impl PartialOrd for Item {
fn partial_cmp(&self, other: &Item) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Item {
fn cmp(&self, other: &Item) -> Ordering {
let ord = other.cost.cmp(&self.cost);
if ord != Ordering::Equal {
return ord;
}
self.node.cmp(&other.node)
}
}
pub fn all_walking_costs_from(
map: &Map,
starts: Vec<Spot>,
time_limit: Duration,
opts: WalkingOptions,
) -> HashMap<BuildingID, Duration> {
let mut queue: BinaryHeap<Item> = BinaryHeap::new();
for spot in starts {
match spot {
Spot::Building(b_id) => {
queue.push(Item {
cost: Duration::ZERO,
node: WalkingNode::closest(map.get_b(b_id).sidewalk_pos, map),
});
}
Spot::Border(i_id) => {
let intersection = map.get_i(i_id);
let incoming_lanes = intersection.incoming_lanes.clone();
let mut outgoing_lanes = intersection.outgoing_lanes.clone();
let mut all_lanes = incoming_lanes;
all_lanes.append(&mut outgoing_lanes);
let walkable_lanes: Vec<&Lane> = all_lanes
.into_iter()
.map(|l_id| map.get_l(l_id))
.filter(|l| l.is_walkable())
.collect();
for lane in walkable_lanes {
queue.push(Item {
cost: Duration::ZERO,
node: WalkingNode::SidewalkEndpoint(
lane.get_directed_parent(),
lane.src_i == i_id,
),
});
}
}
Spot::DirectedRoad(dr) => {
queue.push(Item {
cost: Duration::ZERO,
node: WalkingNode::SidewalkEndpoint(dr, false),
});
queue.push(Item {
cost: Duration::ZERO,
node: WalkingNode::SidewalkEndpoint(dr, true),
});
}
}
}
if !opts.allow_shoulders {
let mut shoulder_endpoint = Vec::new();
for q in &queue {
if let WalkingNode::SidewalkEndpoint(dir_r, _) = q.node {
for lane in &map.get_r(dir_r.id).lanes {
shoulder_endpoint.push(lane.lane_type == LaneType::Shoulder);
}
}
}
if shoulder_endpoint.into_iter().all(|x| x) {
return HashMap::new();
}
}
let mut sidewalk_to_bldgs = MultiMap::new();
for b in map.all_buildings() {
sidewalk_to_bldgs.insert(b.sidewalk(), b.id);
}
let mut results = HashMap::new();
let mut visited_nodes = HashSet::new();
while let Some(current) = queue.pop() {
if visited_nodes.contains(¤t.node) {
continue;
}
if current.cost > time_limit {
continue;
}
visited_nodes.insert(current.node);
let (r, is_dst_i) = match current.node {
WalkingNode::SidewalkEndpoint(r, is_dst_i) => (r, is_dst_i),
_ => unreachable!(),
};
let lane = map.get_l(r.must_get_sidewalk(map));
if opts.allow_shoulders || lane.lane_type != LaneType::Shoulder {
let sidewalk_len = lane.length();
let step = if is_dst_i {
PathStep::ContraflowLane(lane.id)
} else {
PathStep::Lane(lane.id)
};
let speed =
step.max_speed_along(Some(opts.walking_speed), PathConstraints::Pedestrian, map);
let cross_to_node = WalkingNode::SidewalkEndpoint(r, !is_dst_i);
if !visited_nodes.contains(&cross_to_node) {
for b in sidewalk_to_bldgs.get(lane.id) {
let bldg_dist_along = map.get_b(*b).sidewalk_pos.dist_along();
let dist_to_bldg = if is_dst_i {
sidewalk_len - bldg_dist_along
} else {
bldg_dist_along
};
let bldg_cost = current.cost + dist_to_bldg / speed;
if bldg_cost <= time_limit {
results.insert(*b, bldg_cost);
}
}
queue.push(Item {
cost: current.cost + sidewalk_len / speed,
node: cross_to_node,
});
}
}
for turn in map.get_turns_for(lane.id, PathConstraints::Pedestrian) {
if (turn.id.parent == lane.dst_i) != is_dst_i {
continue;
}
queue.push(Item {
cost: current.cost
+ turn.geom.length()
/ PathStep::Turn(turn.id).max_speed_along(
Some(opts.walking_speed),
PathConstraints::Pedestrian,
map,
)
+ zone_cost(turn.id.to_movement(map), PathConstraints::Pedestrian, map),
node: WalkingNode::SidewalkEndpoint(
map.get_l(turn.id.dst).get_directed_parent(),
map.get_l(turn.id.dst).dst_i == turn.id.parent,
),
});
}
}
results
}