1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
use crate::{
    IndividTrip, PersonID, PersonSpec, Scenario, ScenarioGenerator, SpawnTrip, TripEndpoint,
    TripMode,
};
use abstutil::{Parallelism, Timer};
use geom::{Distance, Duration, Time};
use map_model::{BuildingID, BuildingType, Intersection, Map, PathConstraints, PathRequest};
use rand::seq::SliceRandom;
use rand::Rng;
use rand_xorshift::XorShiftRng;

impl ScenarioGenerator {
    // Designed in https://github.com/dabreegster/abstreet/issues/154
    pub fn proletariat_robot(map: &Map, rng: &mut XorShiftRng, timer: &mut Timer) -> Scenario {
        let mut residences: Vec<(BuildingID, XorShiftRng)> = Vec::new();
        let mut workplaces: Vec<BuildingID> = Vec::new();
        let mut num_residences = 0;
        for b in map.all_buildings() {
            match b.bldg_type {
                BuildingType::Residential(num_ppl) => {
                    for _ in 0..num_ppl {
                        residences.push((b.id, abstutil::fork_rng(rng)));
                    }
                    num_residences += 1;
                }
                BuildingType::ResidentialCommercial(num_ppl) => {
                    for _ in 0..num_ppl {
                        residences.push((b.id, abstutil::fork_rng(rng)));
                    }
                    workplaces.push(b.id);
                    num_residences += 1;
                }
                BuildingType::Commercial => {
                    workplaces.push(b.id);
                }
                BuildingType::Empty => {}
            }
        }

        let mut s = Scenario::empty(map, "random people going to/from work");
        // Include all buses/trains
        s.only_seed_buses = None;

        for mut person in timer
            .parallelize(
                "create people",
                Parallelism::Fastest,
                residences,
                |(home, mut forked_rng)| robot_person(home, &workplaces, map, &mut forked_rng),
            )
            .into_iter()
            .flatten()
        {
            person.id = PersonID(s.people.len());
            s.people.push(person);
        }

        // Create trips between map borders. For now, scale the number by the number of residences.
        let incoming_connections = map.all_incoming_borders();
        let outgoing_connections = map.all_outgoing_borders();
        for mut person in timer
            .parallelize(
                "create border trips",
                Parallelism::Fastest,
                std::iter::repeat_with(|| abstutil::fork_rng(rng))
                    .take(num_residences)
                    .collect(),
                |mut forked_rng| {
                    border_person(
                        &incoming_connections,
                        &outgoing_connections,
                        map,
                        &mut forked_rng,
                    )
                },
            )
            .into_iter()
            .flatten()
        {
            person.id = PersonID(s.people.len());
            s.people.push(person);
        }

        s
    }
}

// Make a person going from their home to a random workplace, then back again later.
fn robot_person(
    home: BuildingID,
    workplaces: &Vec<BuildingID>,
    map: &Map,
    rng: &mut XorShiftRng,
) -> Option<PersonSpec> {
    let work = *workplaces.choose(rng).unwrap();
    if home == work {
        // working and living in the same building
        return None;
    }
    // Decide mode based on walking distance. If the buildings aren't connected,
    // probably a bug in importing; just skip this person.
    let dist = map
        .pathfind(PathRequest {
            start: map.get_b(home).sidewalk_pos,
            end: map.get_b(work).sidewalk_pos,
            constraints: PathConstraints::Pedestrian,
        })?
        .total_length();
    // TODO If home or work is in an access-restricted zone (like a living street),
    // then probably don't drive there. Actually, it depends on the specific tagging;
    // access=no in the US usually means a gated community.
    let mode = select_trip_mode(dist, rng);

    // TODO This will cause a single morning and afternoon rush. Outside of these times,
    // it'll be really quiet. Probably want a normal distribution centered around these
    // peak times, but with a long tail.
    let mut depart_am = rand_time(
        rng,
        Time::START_OF_DAY + Duration::hours(7),
        Time::START_OF_DAY + Duration::hours(10),
    );
    let mut depart_pm = rand_time(
        rng,
        Time::START_OF_DAY + Duration::hours(17),
        Time::START_OF_DAY + Duration::hours(19),
    );

    if rng.gen_bool(0.1) {
        // hacky hack to get some background traffic
        depart_am = rand_time(
            rng,
            Time::START_OF_DAY + Duration::hours(0),
            Time::START_OF_DAY + Duration::hours(12),
        );
        depart_pm = rand_time(
            rng,
            Time::START_OF_DAY + Duration::hours(12),
            Time::START_OF_DAY + Duration::hours(24),
        );
    }

    // Skip the person if either trip can't be created.
    let goto_work = SpawnTrip::new(
        TripEndpoint::Bldg(home),
        TripEndpoint::Bldg(work),
        mode,
        map,
    )?;
    let return_home = SpawnTrip::new(
        TripEndpoint::Bldg(work),
        TripEndpoint::Bldg(home),
        mode,
        map,
    )?;

    Some(PersonSpec {
        // Fix this outside the parallelism
        id: PersonID(0),
        orig_id: None,
        trips: vec![
            IndividTrip::new(depart_am, goto_work),
            IndividTrip::new(depart_pm, return_home),
        ],
    })
}

fn border_person(
    incoming_connections: &Vec<&Intersection>,
    outgoing_connections: &Vec<&Intersection>,
    map: &Map,
    rng: &mut XorShiftRng,
) -> Option<PersonSpec> {
    // TODO it would be nice to weigh border points by for example lane count
    let random_incoming_border = incoming_connections.choose(rng).unwrap();
    let random_outgoing_border = outgoing_connections.choose(rng).unwrap();
    let b_random_incoming_border = incoming_connections.choose(rng).unwrap();
    let b_random_outgoing_border = outgoing_connections.choose(rng).unwrap();
    if random_incoming_border.id == random_outgoing_border.id
        || b_random_incoming_border.id == b_random_outgoing_border.id
    {
        return None;
    }
    // TODO calculate
    let distance_on_map = Distance::meters(2000.0);
    // TODO randomize
    // having random trip distance happening offscreen will allow things
    // like very short car trips, representing larger car trip happening mostly offscreen
    let distance_outside_map = Distance::meters(rng.gen_range(0.0, 20_000.0));
    let mode = select_trip_mode(distance_on_map + distance_outside_map, rng);
    let goto_work = SpawnTrip::new(
        TripEndpoint::Border(random_incoming_border.id, None),
        TripEndpoint::Border(random_outgoing_border.id, None),
        mode,
        map,
    )?;
    let return_home = SpawnTrip::new(
        TripEndpoint::Border(b_random_incoming_border.id, None),
        TripEndpoint::Border(b_random_outgoing_border.id, None),
        mode,
        map,
    )?;
    // TODO more reasonable time schedule, rush hour peak etc
    let depart_am = rand_time(
        rng,
        Time::START_OF_DAY + Duration::hours(0),
        Time::START_OF_DAY + Duration::hours(12),
    );
    let depart_pm = rand_time(
        rng,
        Time::START_OF_DAY + Duration::hours(12),
        Time::START_OF_DAY + Duration::hours(24),
    );
    Some(PersonSpec {
        id: PersonID(0),
        orig_id: None,
        trips: vec![
            IndividTrip::new(depart_am, goto_work),
            IndividTrip::new(depart_pm, return_home),
        ],
    })
}

fn select_trip_mode(distance: Distance, rng: &mut XorShiftRng) -> TripMode {
    // TODO Make this probabilistic
    // for example probability of walking currently has massive differences
    // at thresholds, it would be nicer to change this gradually
    // TODO - do not select based on distance but select one that is fastest/best in the
    // given situation excellent bus connection / plenty of parking /
    // cycleways / suitable rail connection all strongly influence
    // selected mode of transport, distance is not the sole influence
    // in some cities there may case where driving is only possible method
    // to get somewhere, even at a short distance

    // Always walk for really short trips
    if distance < Distance::miles(0.5) {
        return TripMode::Walk;
    }

    // Sometimes bike or walk for moderate trips
    if distance < Distance::miles(3.0) {
        if rng.gen_bool(0.15) {
            return TripMode::Bike;
        }
        if rng.gen_bool(0.05) {
            return TripMode::Walk;
        }
    }

    // For longer trips, maybe bike for dedicated cyclists
    if rng.gen_bool(0.005) {
        return TripMode::Bike;
    }
    // Try transit if available, or fallback to walking
    if rng.gen_bool(0.3) {
        return TripMode::Transit;
    }

    // Most of the time, just drive
    TripMode::Drive
}

fn rand_time(rng: &mut XorShiftRng, low: Time, high: Time) -> Time {
    assert!(high > low);
    Time::START_OF_DAY + Duration::seconds(rng.gen_range(low.inner_seconds(), high.inner_seconds()))
}