1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
use std::collections::HashSet;
use std::fmt;

use anyhow::{Context, Result};
use geo::prelude::ClosestPoint;
use serde::{Deserialize, Serialize};

use crate::{
    Angle, Bounds, Circle, Distance, GPSBounds, HashablePt2D, InfiniteLine, Line, LonLat, Polygon,
    Pt2D, Ring, EPSILON_DIST,
};

// TODO How to tune this?
const MITER_THRESHOLD: f64 = 500.0;

// TODO There used to be a second style that just has extra little hooks going out
pub enum ArrowCap {
    Triangle,
}

// TODO Document and enforce invariants:
// - at least two points
// - no duplicate points, whether adjacent or loops
// - no "useless" intermediate points with the same angle
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
pub struct PolyLine {
    pts: Vec<Pt2D>,
    // TODO Note that caching length doesn't improve profiling results (by running
    // small_spawn_completes test in release mode). May not be worth doing this.
    length: Distance,
}

impl PolyLine {
    pub fn new(pts: Vec<Pt2D>) -> Result<PolyLine> {
        if pts.len() < 2 {
            bail!("Need at least two points for a PolyLine");
        }
        let length = pts.windows(2).fold(Distance::ZERO, |so_far, pair| {
            so_far + pair[0].dist_to(pair[1])
        });

        if pts.windows(2).any(|pair| pair[0] == pair[1]) {
            bail!(
                "PL with total length {} and {} pts has ~dupe adjacent pts",
                length,
                pts.len(),
            );
        }

        let result = PolyLine { pts, length };

        // Can't have duplicates! If the polyline ever crosses back on itself, all sorts of things
        // are broken.
        let (_, dupes) = to_set(result.points());
        if !dupes.is_empty() {
            bail!(
                "PL with total length {} and {} pts has dupe non-adjacent pts",
                result.length,
                result.pts.len(),
            );
        }

        Ok(result)
    }
    pub fn must_new(pts: Vec<Pt2D>) -> PolyLine {
        PolyLine::new(pts).unwrap()
    }

    /// Doesn't check for duplicates. Use at your own risk.
    pub fn unchecked_new(pts: Vec<Pt2D>) -> PolyLine {
        assert!(pts.len() >= 2);
        let length = pts.windows(2).fold(Distance::ZERO, |so_far, pair| {
            so_far + pair[0].dist_to(pair[1])
        });

        PolyLine { pts, length }
    }

    /// First dedupes adjacent points
    pub fn deduping_new(mut pts: Vec<Pt2D>) -> Result<PolyLine> {
        pts.dedup();
        PolyLine::new(pts)
    }

    /// Like make_polygons, but make sure the points actually form a ring.
    pub fn to_thick_ring(&self, width: Distance) -> Ring {
        let mut side1 = self
            .shift_with_sharp_angles(width / 2.0, MITER_THRESHOLD)
            .unwrap();
        let mut side2 = self
            .shift_with_sharp_angles(-width / 2.0, MITER_THRESHOLD)
            .unwrap();
        side2.reverse();
        side1.extend(side2);
        side1.push(side1[0]);
        side1.dedup();
        Ring::must_new(side1)
    }

    pub fn to_thick_boundary(
        &self,
        self_width: Distance,
        boundary_width: Distance,
    ) -> Option<Polygon> {
        if self_width <= boundary_width || self.length() <= boundary_width + EPSILON_DIST {
            return None;
        }
        // TODO exact_slice() used to work fine here, but the SUMO montlake map triggers a problem
        // there
        let slice = self
            .maybe_exact_slice(boundary_width / 2.0, self.length() - boundary_width / 2.0)
            .ok()?;
        Some(
            slice
                .to_thick_ring(self_width - boundary_width)
                .to_outline(boundary_width),
        )
    }

    pub fn reversed(&self) -> PolyLine {
        let mut pts = self.pts.clone();
        pts.reverse();
        PolyLine::must_new(pts)
    }

    pub fn maybe_reverse(&self, reverse: bool) -> PolyLine {
        if reverse {
            self.reversed()
        } else {
            self.clone()
        }
    }

    /// Returns the quadrant where the overall angle of this polyline (pointing from the first to
    /// last point) is in. Output between 0 and 3.
    pub fn quadrant(&self) -> i64 {
        let line_angle: f64 = self.overall_angle().normalized_radians();
        let line_angle = (line_angle / (std::f64::consts::PI / 2.0)) as i64;
        line_angle.rem_euclid(4) + 1
    }

    /// Glue together two polylines in order. The last point of `self` must be the same as the
    /// first point of `other`. This method handles removing unnecessary intermediate points if the
    /// extension happens to be at the same angle as the last line segment of `self`.
    pub fn extend(self, other: PolyLine) -> Result<PolyLine> {
        if *self.pts.last().unwrap() != other.pts[0] {
            bail!("can't extend PL; last and first points don't match");
        }

        let mut self_pts = self.pts;
        let mut other_pts = other.pts;

        loop {
            let (pl1, _) = to_set(&self_pts);
            let (pl2, _) = to_set(&other_pts[1..]);

            if pl1.intersection(&pl2).next().is_some() {
                // Happens on some walking turns. Just clip out the loop. Start searching from the
                // end of 'other'.
                // TODO Measure the length of the thing being clipped out, to be sure this isn't
                // running amok.
                for (other_rev_idx, pt) in other_pts.iter().rev().enumerate() {
                    if pl1.contains(&pt.to_hashable()) {
                        while self_pts.last().unwrap() != pt {
                            self_pts.pop();
                        }
                        other_pts = other_pts[other_pts.len() - 1 - other_rev_idx..].to_vec();
                        break;
                    }
                }
                // Sanity check
                assert_eq!(*self_pts.last().unwrap(), other_pts[0]);
            } else {
                break;
            }
        }

        // There's an exciting edge case: the next point to add is on self's last line.
        if other_pts.len() >= 2 {
            let same_line = self_pts[self_pts.len() - 2]
                .angle_to(self_pts[self_pts.len() - 1])
                .approx_eq(other_pts[0].angle_to(other_pts[1]), 0.1);
            if same_line {
                self_pts.pop();
            }
        }
        self_pts.extend(other_pts.iter().skip(1));
        PolyLine::new(self_pts)
    }

    /// Like `extend`, but panics on failure.
    pub fn must_extend(self, other: PolyLine) -> PolyLine {
        self.extend(other).unwrap()
    }

    /// Extends `self` by a single point. If the new point is close enough to the last, dedupes.
    /// Doesn't clean up any intermediate points.
    pub fn optionally_push(self, pt: Pt2D) -> PolyLine {
        let orig = self.clone();
        let mut pts = self.into_points();
        pts.push(pt);
        match PolyLine::deduping_new(pts) {
            Ok(pl) => pl,
            // If the polyline loops back on itself and someone manages to exactly repeat an
            // earlier point, just don't add this point
            Err(_) => orig,
        }
    }

    /// Like `extend`, but handles the last and first point not matching by inserting that point.
    /// Doesn't clean up any intermediate points.
    pub fn force_extend(mut self, other: PolyLine) -> Result<PolyLine> {
        if *self.pts.last().unwrap() != other.pts[0] {
            // TODO Blindly... what if we need to do the angle collapsing?
            self.pts.push(other.pts[0]);
        }
        self.extend(other)
    }

    /// One or both args might be empty.
    pub fn append(first: Vec<Pt2D>, second: Vec<Pt2D>) -> Result<Vec<Pt2D>> {
        if second.is_empty() {
            return Ok(first);
        }
        if first.is_empty() {
            return Ok(second);
        }

        Ok(PolyLine::new(first)?
            .extend(PolyLine::new(second)?)?
            .into_points())
    }

    pub fn points(&self) -> &Vec<Pt2D> {
        &self.pts
    }
    pub fn into_points(self) -> Vec<Pt2D> {
        self.pts
    }

    pub fn lines(&self) -> impl Iterator<Item = Line> + '_ {
        self.pts
            .windows(2)
            .map(|pair| Line::must_new(pair[0], pair[1]))
    }

    pub fn length(&self) -> Distance {
        self.length
    }

    /// Returns the excess distance left over from the end
    pub fn slice(&self, start: Distance, end: Distance) -> Result<(PolyLine, Distance)> {
        if start > end || start < Distance::ZERO || end < Distance::ZERO {
            bail!("Can't get a polyline slice [{}, {}]", start, end);
        }
        if start > self.length() {
            bail!(
                "Can't get a polyline slice [{}, {}] on something of length {}",
                start,
                end,
                self.length()
            );
        }
        if end - start < EPSILON_DIST {
            bail!(
                "Can't get a polyline slice [{}, {}] -- too small",
                start,
                end
            );
        }

        let mut result: Vec<Pt2D> = Vec::new();
        let mut dist_so_far = Distance::ZERO;

        for line in self.lines() {
            let length = line.length();

            // Does this line contain the first point of the slice?
            if result.is_empty() && dist_so_far + length >= start {
                result.push(line.must_dist_along(start - dist_so_far));
            }

            // Does this line contain the last point of the slice?
            if dist_so_far + length >= end {
                let last_pt = line.must_dist_along(end - dist_so_far);
                if *result.last().unwrap() == last_pt {
                    result.pop();
                }
                result.push(last_pt);
                if result.len() == 1 {
                    // TODO Understand what happened here.
                    bail!("slice({}, {}) on {} did something weird", start, end, self);
                }
                return Ok((PolyLine::new(result)?, Distance::ZERO));
            }

            // If we're in the middle, just collect the endpoint. But not if it's too close to the
            // previous point (namely, the start, which could be somewhere far along a line)
            if !result.is_empty() && *result.last().unwrap() != line.pt2() {
                result.push(line.pt2());
            }

            dist_so_far += length;
        }

        if result.is_empty() {
            bail!(
                "Slice [{}, {}] has a start too big for polyline of length {}",
                start,
                end,
                self.length()
            );
        }
        if result.len() == 1 {
            bail!(
                "Slice [{}, {}] on {} wound up a single point",
                start,
                end,
                self
            );
        }

        Ok((PolyLine::new(result)?, end - dist_so_far))
    }

    /// No excess leftover distance allowed.
    // TODO Lot of callers of this. Make safer later.
    pub fn exact_slice(&self, start: Distance, end: Distance) -> PolyLine {
        self.maybe_exact_slice(start, end).unwrap()
    }
    pub fn maybe_exact_slice(&self, start: Distance, end: Distance) -> Result<PolyLine> {
        let (pl, leftover) = self
            .slice(start, end)
            .with_context(|| format!("exact_slice({}, {}) yielded empty slice", start, end))?;
        if leftover > EPSILON_DIST {
            bail!(
                "exact_slice({}, {}) on a PL of length {} yielded leftover distance of {}",
                start,
                end,
                self.length(),
                leftover
            );
        }
        Ok(pl)
    }

    pub fn first_half(&self) -> PolyLine {
        self.exact_slice(Distance::ZERO, self.length() / 2.0)
    }

    pub fn second_half(&self) -> PolyLine {
        self.exact_slice(self.length() / 2.0, self.length())
    }

    pub fn dist_along(&self, dist_along: Distance) -> Result<(Pt2D, Angle)> {
        if dist_along < Distance::ZERO {
            bail!("dist_along {} is negative", dist_along);
        }
        if dist_along > self.length() {
            bail!("dist_along {} is longer than {}", dist_along, self.length());
        }
        if dist_along == self.length() {
            return Ok((self.last_pt(), self.last_line().angle()));
        }

        let mut dist_left = dist_along;
        for (idx, l) in self.lines().enumerate() {
            let length = l.length();
            let epsilon = if idx == self.pts.len() - 2 {
                EPSILON_DIST
            } else {
                Distance::ZERO
            };
            if dist_left <= length + epsilon {
                // Floating point errors means sometimes we ask for something slightly longer than
                // the line
                let dist = l.dist_along(dist_left).unwrap_or_else(|_| l.pt2());
                return Ok((dist, l.angle()));
            }
            dist_left -= length;
        }
        // Leaving this panic, because I haven't seen this in ages, and something is seriously
        // wrong if we get here
        panic!(
            "PolyLine dist_along of {} broke on length {}: {}",
            dist_along,
            self.length(),
            self
        );
    }
    pub fn must_dist_along(&self, dist_along: Distance) -> (Pt2D, Angle) {
        self.dist_along(dist_along).unwrap()
    }

    pub fn middle(&self) -> Pt2D {
        // If this fails, must be some super tiny line. Just return the first point in that case.
        match self.dist_along(self.length() / 2.0) {
            Ok((pt, _)) => pt,
            Err(err) => {
                println!(
                    "Guessing middle of PL with length {}: {}",
                    self.length(),
                    err
                );
                self.first_pt()
            }
        }
    }

    pub fn first_pt(&self) -> Pt2D {
        self.pts[0]
    }
    pub fn last_pt(&self) -> Pt2D {
        *self.pts.last().unwrap()
    }
    pub fn first_line(&self) -> Line {
        Line::must_new(self.pts[0], self.pts[1])
    }
    pub fn last_line(&self) -> Line {
        Line::must_new(self.pts[self.pts.len() - 2], self.pts[self.pts.len() - 1])
    }

    pub fn shift_right(&self, width: Distance) -> Result<PolyLine> {
        self.shift_with_corrections(width)
    }
    pub fn must_shift_right(&self, width: Distance) -> PolyLine {
        self.shift_right(width).unwrap()
    }

    pub fn shift_left(&self, width: Distance) -> Result<PolyLine> {
        self.shift_with_corrections(-width)
    }
    pub fn must_shift_left(&self, width: Distance) -> PolyLine {
        self.shift_left(width).unwrap()
    }

    /// Perpendicularly shifts the polyline to the right if positive or left if negative.
    pub fn shift_either_direction(&self, width: Distance) -> Result<PolyLine> {
        self.shift_with_corrections(width)
    }

    /// `self` represents some center, with `total_width`. Logically this shifts left by
    /// `total_width / 2`, then right by `width_from_left_side`, but without exasperating sharp
    /// bends.
    pub fn shift_from_center(
        &self,
        total_width: Distance,
        width_from_left_side: Distance,
    ) -> Result<PolyLine> {
        let half_width = total_width / 2.0;
        if width_from_left_side < half_width {
            self.shift_left(half_width - width_from_left_side)
        } else {
            self.shift_right(width_from_left_side - half_width)
        }
    }

    // Things to remember about shifting polylines:
    // - the length before and after probably don't match up
    // - the number of points may not match
    fn shift_with_corrections(&self, width: Distance) -> Result<PolyLine> {
        let raw = self.shift_with_sharp_angles(width, MITER_THRESHOLD)?;
        let result = PolyLine::deduping_new(raw)?;
        if result.pts.len() == self.pts.len() {
            fix_angles(self, result)
        } else {
            Ok(result)
        }
    }

    // If we start with a valid PolyLine, I'm not sure how we can ever possibly fail here, but it's
    // happening. Avoid crashing.
    fn shift_with_sharp_angles(&self, width: Distance, miter_threshold: f64) -> Result<Vec<Pt2D>> {
        if self.pts.len() == 2 {
            let l = Line::new(self.pts[0], self.pts[1])?.shift_either_direction(width);
            return Ok(vec![l.pt1(), l.pt2()]);
        }

        let mut result: Vec<Pt2D> = Vec::new();

        let mut pt3_idx = 2;
        let mut pt1_raw = self.pts[0];
        let mut pt2_raw = self.pts[1];

        loop {
            let pt3_raw = self.pts[pt3_idx];

            let l1 = Line::new(pt1_raw, pt2_raw)?.shift_either_direction(width);
            let l2 = Line::new(pt2_raw, pt3_raw)?.shift_either_direction(width);

            if pt3_idx == 2 {
                result.push(l1.pt1());
            }

            if let Some(pt2_shift) = l1.infinite().intersection(&l2.infinite()) {
                // Miter caps sometimes explode out to infinity. Hackily work around this.
                let dist_away = l1.pt1().raw_dist_to(pt2_shift);
                if dist_away < miter_threshold {
                    result.push(pt2_shift);
                } else {
                    result.push(l1.pt2());
                }
            } else {
                // When the lines are perfectly parallel, it means pt2_shift_1st == pt2_shift_2nd
                // and the original geometry is redundant.
                result.push(l1.pt2());
            }
            if pt3_idx == self.pts.len() - 1 {
                result.push(l2.pt2());
                break;
            }

            pt1_raw = pt2_raw;
            pt2_raw = pt3_raw;
            pt3_idx += 1;
        }

        assert!(result.len() == self.pts.len());
        Ok(result)
    }

    /// The resulting polygon is manually triangulated and may not have a valid outer Ring (but it
    /// usually does).
    pub fn make_polygons(&self, width: Distance) -> Polygon {
        // TODO Don't use the angle corrections yet -- they seem to do weird things.
        let side1 = match self.shift_with_sharp_angles(width / 2.0, MITER_THRESHOLD) {
            Ok(pl) => pl,
            Err(err) => {
                // TODO Circles will look extremely bizarre, but it emphasizes there's a bug
                // without just crashing
                println!("make_polygons({}) of {:?} failed: {}", width, self, err);
                return Circle::new(self.first_pt(), width).to_polygon();
            }
        };
        let mut side2 = match self.shift_with_sharp_angles(-width / 2.0, MITER_THRESHOLD) {
            Ok(pl) => pl,
            Err(err) => {
                println!("make_polygons({}) of {:?} failed: {}", width, self, err);
                return Circle::new(self.first_pt(), width).to_polygon();
            }
        };
        assert_eq!(side1.len(), side2.len());

        // Order the points so that they form a ring. No deduplication yet, though.
        let len = 2 * side1.len();
        let mut points = side1;
        side2.reverse();
        points.extend(side2);
        points.push(points[0]);
        let mut indices = Vec::new();

        // Walk along the first side, making two triangles each step. This is easy to understand
        // with a simple diagram, which I should eventually draw in ASCII art here.
        for high_idx in 1..self.pts.len() {
            indices.extend(vec![high_idx, high_idx - 1, len - high_idx]);
            indices.extend(vec![len - high_idx, len - high_idx - 1, high_idx]);
        }
        Polygon::precomputed(points, indices)
    }

    pub fn exact_dashed_polygons(
        &self,
        width: Distance,
        dash_len: Distance,
        dash_separation: Distance,
    ) -> Vec<Polygon> {
        let mut polygons: Vec<Polygon> = Vec::new();

        let total_length = self.length();

        let mut start = Distance::ZERO;
        loop {
            if start + dash_len >= total_length {
                break;
            }

            polygons.push(
                self.exact_slice(start, start + dash_len)
                    .make_polygons(width),
            );
            start += dash_len + dash_separation;
        }

        polygons
    }

    /// Don't draw the dashes too close to the ends.
    pub fn dashed_lines(
        &self,
        width: Distance,
        dash_len: Distance,
        dash_separation: Distance,
    ) -> Vec<Polygon> {
        if self.length() <= dash_separation * 2.0 + EPSILON_DIST {
            return vec![self.make_polygons(width)];
        }
        self.exact_slice(dash_separation, self.length() - dash_separation)
            .exact_dashed_polygons(width, dash_len, dash_separation)
    }

    /// Fail if the length is too short.
    pub fn maybe_make_arrow(&self, thickness: Distance, cap: ArrowCap) -> Option<Polygon> {
        let head_size = thickness * 2.0;
        let triangle_height = head_size / 2.0_f64.sqrt();

        let slice = self
            .maybe_exact_slice(Distance::ZERO, self.length() - triangle_height)
            .ok()?;

        let angle = slice.last_pt().angle_to(self.last_pt());
        let corner1 = self
            .last_pt()
            .project_away(head_size, angle.rotate_degs(-135.0));
        let corner2 = self
            .last_pt()
            .project_away(head_size, angle.rotate_degs(135.0));

        let mut pts = slice
            .shift_with_sharp_angles(thickness / 2.0, MITER_THRESHOLD)
            .ok()?;
        match cap {
            ArrowCap::Triangle => {
                pts.push(corner2);
                pts.push(self.last_pt());
                pts.push(corner1);
            }
        }
        let mut side2 = slice
            .shift_with_sharp_angles(-thickness / 2.0, MITER_THRESHOLD)
            .ok()?;
        side2.reverse();
        pts.extend(side2);
        pts.push(pts[0]);
        pts.dedup();
        Some(Ring::must_new(pts).into_polygon())
    }

    /// If the length is too short, just give up and make the thick line
    pub fn make_arrow(&self, thickness: Distance, cap: ArrowCap) -> Polygon {
        if let Some(p) = self.maybe_make_arrow(thickness, cap) {
            p
        } else {
            // Just give up and make the thick line.
            self.make_polygons(thickness)
        }
    }

    pub fn make_double_arrow(&self, thickness: Distance, cap: ArrowCap) -> Polygon {
        let head_size = thickness * 2.0;
        let triangle_height = head_size / 2.0_f64.sqrt();

        if self.length() < triangle_height * 2.0 + EPSILON_DIST {
            // Just give up and make the thick line.
            return self.make_polygons(thickness);
        }
        let slice = self.exact_slice(triangle_height, self.length() - triangle_height);

        let angle = slice.last_pt().angle_to(self.last_pt());
        let corner1 = self
            .last_pt()
            .project_away(head_size, angle.rotate_degs(-135.0));
        let corner2 = self
            .last_pt()
            .project_away(head_size, angle.rotate_degs(135.0));

        let mut pts = match slice.shift_with_sharp_angles(thickness / 2.0, MITER_THRESHOLD) {
            Ok(pl) => pl,
            Err(_) => {
                return self.make_polygons(thickness);
            }
        };
        match cap {
            ArrowCap::Triangle => {
                pts.push(corner2);
                pts.push(self.last_pt());
                pts.push(corner1);
            }
        }
        let mut side2 = match slice.shift_with_sharp_angles(-thickness / 2.0, MITER_THRESHOLD) {
            Ok(pl) => pl,
            Err(_) => {
                return self.make_polygons(thickness);
            }
        };
        side2.reverse();
        pts.extend(side2);

        let angle = self.first_pt().angle_to(slice.first_pt());
        let corner3 = self
            .first_pt()
            .project_away(head_size, angle.rotate_degs(-45.0));
        let corner4 = self
            .first_pt()
            .project_away(head_size, angle.rotate_degs(45.0));
        match cap {
            ArrowCap::Triangle => {
                pts.push(corner3);
                pts.push(self.first_pt());
                pts.push(corner4);
            }
        }

        pts.push(pts[0]);
        pts.dedup();
        Ring::must_new(pts).into_polygon()
    }

    pub fn dashed_arrow(
        &self,
        width: Distance,
        dash_len: Distance,
        dash_separation: Distance,
        cap: ArrowCap,
    ) -> Vec<Polygon> {
        let mut polygons = self.exact_dashed_polygons(width, dash_len, dash_separation);
        // And a cap on the arrow. In case the last line is long, trim it to be the dash
        // length.
        let last_line = self.last_line();
        let last_len = last_line.length();
        let arrow_line = if last_len <= dash_len {
            last_line
        } else {
            Line::must_new(
                last_line.must_dist_along(last_len - dash_len),
                last_line.pt2(),
            )
        };
        polygons.push(arrow_line.to_polyline().make_arrow(width, cap));
        polygons
    }

    /// Also return the angle of the line where the hit was found
    // TODO Also return distance along self of the hit
    pub fn intersection(&self, other: &PolyLine) -> Option<(Pt2D, Angle)> {
        assert_ne!(self, other);

        // There could be several collisions. Pick the "first" from self's perspective.
        let mut closest_intersection: Option<(Pt2D, Angle)> = None;
        let mut closest_intersection_distance: Option<Distance> = None;

        for l1 in self.lines() {
            for l2 in other.lines() {
                if let Some(pt) = l1.intersection(&l2) {
                    if let Some(new_distance) = self.get_slice_ending_at(pt).map(|pl| pl.length()) {
                        match closest_intersection_distance {
                            None => {
                                closest_intersection = Some((pt, l1.angle()));
                                closest_intersection_distance = Some(new_distance);
                            }
                            Some(existing_distance) if existing_distance > new_distance => {
                                closest_intersection = Some((pt, l1.angle()));
                                closest_intersection_distance = Some(new_distance);
                            }
                            _ => {}
                        }
                    }
                }
            }
        }

        // TODO Why is any of this necessary? Found a test case at the intersection geometry for
        // https://www.openstreetmap.org/node/274088813 where this made a huge difference!
        if closest_intersection.is_none() && self.last_pt() == other.last_pt() {
            return Some((self.last_pt(), self.last_line().angle()));
        }

        closest_intersection
    }

    // TODO Also distance along
    pub fn intersection_infinite(&self, other: &InfiniteLine) -> Option<Pt2D> {
        for l in self.lines() {
            if let Some(hit) = l.intersection_infinite(other) {
                return Some(hit);
            }
        }
        None
    }

    /// Panics if the pt is not on the polyline. Returns None if the point is the first point
    /// (meaning the slice is empty).
    pub fn get_slice_ending_at(&self, pt: Pt2D) -> Option<PolyLine> {
        if self.first_pt() == pt {
            return None;
        }

        if let Some(idx) = self.lines().position(|l| l.contains_pt(pt)) {
            let mut pts = self.pts.clone();
            pts.truncate(idx + 1);
            // Make sure the last line isn't too tiny
            if *pts.last().unwrap() == pt {
                pts.pop();
            }
            pts.push(pt);
            if pts.len() == 1 {
                return None;
            }
            Some(PolyLine::must_new(pts))
        } else {
            panic!("Can't get_slice_ending_at: {} doesn't contain {}", self, pt);
        }
    }

    /// Returns None if the point is the last point.
    pub fn get_slice_starting_at(&self, pt: Pt2D) -> Option<PolyLine> {
        if self.last_pt() == pt {
            return None;
        }

        if let Some(idx) = self.lines().position(|l| l.contains_pt(pt)) {
            let mut pts = self.pts.clone();
            pts = pts.split_off(idx + 1);
            if pt != pts[0] {
                pts.insert(0, pt);
            }
            Some(PolyLine::must_new(pts))
        } else {
            panic!(
                "Can't get_slice_starting_at: {} doesn't contain {}",
                self, pt
            );
        }
    }

    /// Same as get_slice_ending_at, but returns None if the point isn't on the polyline.
    // TODO Switch everything to this, after better understanding why this is happening at all.
    pub fn safe_get_slice_ending_at(&self, pt: Pt2D) -> Option<PolyLine> {
        if self.first_pt() == pt {
            return None;
        }

        if let Some(idx) = self.lines().position(|l| l.contains_pt(pt)) {
            let mut pts = self.pts.clone();
            pts.truncate(idx + 1);
            // Make sure the last line isn't too tiny
            if *pts.last().unwrap() == pt {
                pts.pop();
            }
            pts.push(pt);
            if pts.len() == 1 {
                return None;
            }
            Some(PolyLine::must_new(pts))
        } else {
            None
        }
    }

    /// Same as get_slice_starting_at, but returns None if the point isn't on the polyline.
    pub fn safe_get_slice_starting_at(&self, pt: Pt2D) -> Option<PolyLine> {
        if self.last_pt() == pt {
            return None;
        }

        if let Some(idx) = self.lines().position(|l| l.contains_pt(pt)) {
            let mut pts = self.pts.clone();
            pts = pts.split_off(idx + 1);
            if pt != pts[0] {
                pts.insert(0, pt);
            }
            Some(PolyLine::must_new(pts))
        } else {
            None
        }
    }

    pub fn dist_along_of_point(&self, pt: Pt2D) -> Option<(Distance, Angle)> {
        let mut dist_along = Distance::ZERO;
        for l in self.lines() {
            if let Some(dist) = l.dist_along_of_point(pt) {
                return Some((dist_along + dist, l.angle()));
            } else {
                dist_along += l.length();
            }
        }
        None
    }

    pub fn trim_to_endpts(&self, pt1: Pt2D, pt2: Pt2D) -> PolyLine {
        assert!(pt1 != pt2);
        let mut dist1 = self.dist_along_of_point(pt1).unwrap().0;
        let mut dist2 = self.dist_along_of_point(pt2).unwrap().0;
        if dist1 > dist2 {
            std::mem::swap(&mut dist1, &mut dist2);
        }
        self.exact_slice(dist1, dist2)
    }

    pub fn get_bounds(&self) -> Bounds {
        Bounds::from(&self.pts)
    }

    /// If the current line is at least this long, return it. Otherwise, extend the end of it,
    /// following the angle of the last line.
    pub fn extend_to_length(&self, min_len: Distance) -> PolyLine {
        let need_len = min_len - self.length();
        if need_len <= Distance::ZERO {
            return self.clone();
        }
        let line = self.last_line();
        // We might be extending a very tiny amount
        if let Ok(extension) = PolyLine::new(vec![
            line.pt2(),
            line.pt2().project_away(need_len, line.angle()),
        ]) {
            self.clone().must_extend(extension)
        } else {
            let mut pts = self.clone().into_points();
            pts.pop();
            pts.push(line.pt2().project_away(need_len, line.angle()));
            PolyLine::must_new(pts)
        }
    }

    /// Produces a GeoJSON linestring, optionally mapping the world-space points back to GPS.
    pub fn to_geojson(&self, gps: Option<&GPSBounds>) -> geojson::Geometry {
        let mut pts = Vec::new();
        if let Some(gps) = gps {
            for pt in gps.convert_back(&self.pts) {
                pts.push(vec![pt.x(), pt.y()]);
            }
        } else {
            for pt in &self.pts {
                pts.push(vec![pt.x(), pt.y()]);
            }
        }
        geojson::Geometry::new(geojson::Value::LineString(pts))
    }

    pub fn from_geojson(feature: &geojson::Feature, gps: Option<&GPSBounds>) -> Result<PolyLine> {
        if let Some(geojson::Geometry {
            value: geojson::Value::LineString(ref pts),
            ..
        }) = feature.geometry
        {
            let mut points = Vec::new();
            for pt in pts {
                let x = pt[0];
                let y = pt[1];
                if let Some(ref gps) = gps {
                    points.push(LonLat::new(x, y).to_pt(gps));
                } else {
                    points.push(Pt2D::new(x, y));
                }
            }
            PolyLine::new(points)
        } else {
            bail!("Input isn't a LineString")
        }
    }

    /// Returns the point on the polyline closest to the query.
    pub fn project_pt(&self, query: Pt2D) -> Pt2D {
        match self
            .to_geo()
            .closest_point(&geo::Point::new(query.x(), query.y()))
        {
            geo::Closest::Intersection(hit) | geo::Closest::SinglePoint(hit) => {
                Pt2D::new(hit.x(), hit.y())
            }
            geo::Closest::Indeterminate => unreachable!(),
        }
    }

    /// Returns the angle from the start to end of this polyline.
    pub fn overall_angle(&self) -> Angle {
        self.first_pt().angle_to(self.last_pt())
    }

    pub(crate) fn to_geo(&self) -> geo::LineString<f64> {
        let pts: Vec<geo::Point<f64>> = self
            .pts
            .iter()
            .map(|pt| geo::Point::new(pt.x(), pt.y()))
            .collect();
        pts.into()
    }

    /// Walk along the PolyLine, starting `buffer_ends` from the start and ending `buffer_ends`
    /// before the end. Advance in increments of `step_size`. Returns the point and angle at each
    /// step.
    pub fn step_along(&self, step_size: Distance, buffer_ends: Distance) -> Vec<(Pt2D, Angle)> {
        self.step_along_start_end(step_size, buffer_ends, buffer_ends)
    }

    /// Walk along the PolyLine, from `start_buffer` to `length - end_buffer`. Advance in
    /// increments of `step_size`. Returns the point and angle at each step.
    pub fn step_along_start_end(
        &self,
        step_size: Distance,
        start_buffer: Distance,
        end_buffer: Distance,
    ) -> Vec<(Pt2D, Angle)> {
        let mut result = Vec::new();
        let mut dist_along = start_buffer;
        let length = self.length();
        while dist_along < length - end_buffer {
            result.push(self.must_dist_along(dist_along));
            dist_along += step_size;
        }
        result
    }

    ///
    /// ```
    /// use geom::{PolyLine, Pt2D, Distance};
    ///
    /// let polyline = PolyLine::must_new(vec![
    ///     Pt2D::new(0.0, 0.0),
    ///     Pt2D::new(0.0, 10.0),
    ///     Pt2D::new(10.0, 20.0),
    /// ]);
    ///
    /// assert_eq!(
    ///     polyline.interpolate_points(Distance::meters(20.0)).points(),
    ///     &vec![
    ///         Pt2D::new(0.0, 0.0),
    ///         Pt2D::new(0.0, 10.0),
    ///         Pt2D::new(10.0, 20.0),
    ///     ]
    /// );
    ///
    /// assert_eq!(
    ///     polyline.interpolate_points(Distance::meters(10.0)).points(),
    ///     &vec![
    ///         Pt2D::new(0.0, 0.0),
    ///         Pt2D::new(0.0, 10.0),
    ///         Pt2D::new(5.0, 15.0),
    ///         Pt2D::new(10.0, 20.0),
    ///     ]
    /// );
    ///
    /// ```
    pub fn interpolate_points(&self, max_step: Distance) -> PolyLine {
        if self.pts.len() < 2 {
            return self.clone();
        }

        let mut output = vec![];
        for line in self.lines() {
            let points = (line.length() / max_step).ceil();
            let step_size = line.length() / points;
            for i in 0..(points as usize) {
                output.push(line.must_dist_along(step_size * i as f64));
            }
        }

        output.push(*self.pts.last().unwrap());

        PolyLine::new(output).unwrap()
    }

    /// An arbitrary placeholder value, when Option types aren't worthwhile
    pub fn dummy() -> PolyLine {
        PolyLine::must_new(vec![Pt2D::new(0.0, 0.0), Pt2D::new(0.1, 0.1)])
    }
}

impl fmt::Display for PolyLine {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        writeln!(f, "PolyLine::new(vec![     // length {}", self.length)?;
        for (idx, pt) in self.pts.iter().enumerate() {
            write!(f, "  Pt2D::new({}, {}),", pt.x(), pt.y())?;
            if idx > 0 {
                let line = Line::must_new(self.pts[idx - 1], *pt);
                write!(
                    f,
                    "    // {}, {} (+ {} @ {})",
                    pt.x() - self.pts[idx - 1].x(),
                    pt.y() - self.pts[idx - 1].y(),
                    line.length(),
                    line.angle(),
                )?;
            }
            writeln!(f)?;
        }
        write!(f, "])")
    }
}

fn fix_angles(orig: &PolyLine, result: PolyLine) -> Result<PolyLine> {
    let mut pts = result.pts.clone();

    // Check that the angles roughly match up between the original and shifted line
    for (idx, (orig_l, shifted_l)) in orig.lines().zip(result.lines()).enumerate() {
        let orig_angle = orig_l.angle();
        let shifted_angle = shifted_l.angle();

        if !orig_angle.approx_eq(shifted_angle, 1.0) {
            // When this happens, the rotation is usually right around 180 -- so try swapping
            // the points!
            /*println!(
                "Points changed angles from {} to {} (rot {})",
                orig_angle, shifted_angle, rot
            );*/
            pts.swap(idx, idx + 1);
            // TODO Start the fixing over. but make sure we won't infinite loop...
            //return fix_angles(orig, result);
        }
    }

    // When we swap points, length of the entire PolyLine may change! Recalculating is vital.
    PolyLine::new(pts)
}

// Also returns the duplicates.
fn to_set(pts: &[Pt2D]) -> (HashSet<HashablePt2D>, HashSet<HashablePt2D>) {
    let mut deduped = HashSet::new();
    let mut dupes = HashSet::new();
    for pt in pts {
        let pt = pt.to_hashable();
        if deduped.contains(&pt) {
            dupes.insert(pt);
        } else {
            deduped.insert(pt);
        }
    }
    (deduped, dupes)
}