1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
use std::collections::HashSet;
use std::fmt;

use anyhow::{Context, Result};
use geo::prelude::ClosestPoint;
use serde::{Deserialize, Serialize};

use crate::{
    Angle, Bounds, Circle, Distance, GPSBounds, HashablePt2D, InfiniteLine, Line, Polygon, Pt2D,
    Ring, EPSILON_DIST,
};

// TODO How to tune this?
const MITER_THRESHOLD: f64 = 500.0;

// TODO There used to be a second style that just has extra little hooks going out
pub enum ArrowCap {
    Triangle,
}

// TODO Document and enforce invariants:
// - at least two points
// - no duplicate points, whether adjacent or loops
// - no "useless" intermediate points with the same angle
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
pub struct PolyLine {
    pts: Vec<Pt2D>,
    // TODO Note that caching length doesn't improve profiling results (by running
    // small_spawn_completes test in release mode). May not be worth doing this.
    length: Distance,
}

impl PolyLine {
    pub fn new(pts: Vec<Pt2D>) -> Result<PolyLine> {
        if pts.len() < 2 {
            bail!("Need at least two points for a PolyLine");
        }
        let length = pts.windows(2).fold(Distance::ZERO, |so_far, pair| {
            so_far + pair[0].dist_to(pair[1])
        });

        if pts.windows(2).any(|pair| pair[0] == pair[1]) {
            bail!(
                "PL with total length {} and {} pts has ~dupe adjacent pts",
                length,
                pts.len(),
            );
        }

        let result = PolyLine { pts, length };

        // Can't have duplicates! If the polyline ever crosses back on itself, all sorts of things
        // are broken.
        let (_, dupes) = to_set(result.points());
        if !dupes.is_empty() {
            bail!(
                "PL with total length {} and {} pts has dupe non-adjacent pts",
                result.length,
                result.pts.len(),
            );
        }

        Ok(result)
    }
    pub fn must_new(pts: Vec<Pt2D>) -> PolyLine {
        PolyLine::new(pts).unwrap()
    }

    /// Doesn't check for duplicates. Use at your own risk.
    pub fn unchecked_new(pts: Vec<Pt2D>) -> PolyLine {
        assert!(pts.len() >= 2);
        let length = pts.windows(2).fold(Distance::ZERO, |so_far, pair| {
            so_far + pair[0].dist_to(pair[1])
        });

        PolyLine { pts, length }
    }

    /// First dedupes adjacent points
    pub fn deduping_new(mut pts: Vec<Pt2D>) -> Result<PolyLine> {
        pts.dedup();
        PolyLine::new(pts)
    }

    /// Like make_polygons, but make sure the points actually form a ring.
    pub fn to_thick_ring(&self, width: Distance) -> Ring {
        let mut side1 = self
            .shift_with_sharp_angles(width / 2.0, MITER_THRESHOLD)
            .unwrap();
        let mut side2 = self
            .shift_with_sharp_angles(-width / 2.0, MITER_THRESHOLD)
            .unwrap();
        side2.reverse();
        side1.extend(side2);
        side1.push(side1[0]);
        side1.dedup();
        Ring::must_new(side1)
    }

    pub fn to_thick_boundary(
        &self,
        self_width: Distance,
        boundary_width: Distance,
    ) -> Option<Polygon> {
        if self_width <= boundary_width || self.length() <= boundary_width + EPSILON_DIST {
            return None;
        }
        // TODO exact_slice() used to work fine here, but the SUMO montlake map triggers a problem
        // there
        let slice = self
            .maybe_exact_slice(boundary_width / 2.0, self.length() - boundary_width / 2.0)
            .ok()?;
        Some(
            slice
                .to_thick_ring(self_width - boundary_width)
                .to_outline(boundary_width),
        )
    }

    pub fn reversed(&self) -> PolyLine {
        let mut pts = self.pts.clone();
        pts.reverse();
        PolyLine::must_new(pts)
    }

    /// Returns the quadrant where the overall angle of this polyline (pointing from the first to
    /// last point) is in. Output between 0 and 3.
    pub fn quadrant(&self) -> i64 {
        let line_angle: f64 = self.overall_angle().normalized_radians();
        let line_angle = (line_angle / (std::f64::consts::PI / 2.0)) as i64;
        line_angle.rem_euclid(4) + 1
    }

    /// Glue together two polylines in order. The last point of `self` must be the same as the
    /// first point of `other`. This method handles removing unnecessary intermediate points if the
    /// extension happens to be at the same angle as the last line segment of `self`.
    pub fn extend(self, other: PolyLine) -> Result<PolyLine> {
        if *self.pts.last().unwrap() != other.pts[0] {
            bail!("can't extend PL; last and first points don't match");
        }

        let mut self_pts = self.pts;
        let mut other_pts = other.pts;

        loop {
            let (pl1, _) = to_set(&self_pts);
            let (pl2, _) = to_set(&other_pts[1..]);

            if pl1.intersection(&pl2).next().is_some() {
                // Happens on some walking turns. Just clip out the loop. Start searching from the
                // end of 'other'.
                // TODO Measure the length of the thing being clipped out, to be sure this isn't
                // running amok.
                for (other_rev_idx, pt) in other_pts.iter().rev().enumerate() {
                    if pl1.contains(&pt.to_hashable()) {
                        while self_pts.last().unwrap() != pt {
                            self_pts.pop();
                        }
                        other_pts = other_pts[other_pts.len() - 1 - other_rev_idx..].to_vec();
                        break;
                    }
                }
                // Sanity check
                assert_eq!(*self_pts.last().unwrap(), other_pts[0]);
            } else {
                break;
            }
        }

        // There's an exciting edge case: the next point to add is on self's last line.
        if other_pts.len() >= 2 {
            let same_line = self_pts[self_pts.len() - 2]
                .angle_to(self_pts[self_pts.len() - 1])
                .approx_eq(other_pts[0].angle_to(other_pts[1]), 0.1);
            if same_line {
                self_pts.pop();
            }
        }
        self_pts.extend(other_pts.iter().skip(1));
        PolyLine::new(self_pts)
    }

    /// Like `extend`, but panics on failure.
    pub fn must_extend(self, other: PolyLine) -> PolyLine {
        self.extend(other).unwrap()
    }

    /// Extends `self` by a single point. If the new point is close enough to the last, dedupes.
    /// Doesn't clean up any intermediate points.
    pub fn optionally_push(self, pt: Pt2D) -> PolyLine {
        let mut pts = self.into_points();
        pts.push(pt);
        PolyLine::deduping_new(pts).unwrap()
    }

    /// Like `extend`, but handles the last and first point not matching by inserting that point.
    /// Doesn't clean up any intermediate points.
    pub fn force_extend(mut self, other: PolyLine) -> Result<PolyLine> {
        if *self.pts.last().unwrap() != other.pts[0] {
            // TODO Blindly... what if we need to do the angle collapsing?
            self.pts.push(other.pts[0]);
        }
        self.extend(other)
    }

    /// One or both args might be empty.
    pub fn append(first: Vec<Pt2D>, second: Vec<Pt2D>) -> Result<Vec<Pt2D>> {
        if second.is_empty() {
            return Ok(first);
        }
        if first.is_empty() {
            return Ok(second);
        }

        Ok(PolyLine::new(first)?
            .extend(PolyLine::new(second)?)?
            .into_points())
    }

    pub fn points(&self) -> &Vec<Pt2D> {
        &self.pts
    }
    pub fn into_points(self) -> Vec<Pt2D> {
        self.pts
    }

    pub fn lines(&self) -> impl Iterator<Item = Line> + '_ {
        self.pts
            .windows(2)
            .map(|pair| Line::must_new(pair[0], pair[1]))
    }

    pub fn length(&self) -> Distance {
        self.length
    }

    /// Returns the excess distance left over from the end
    pub fn slice(&self, start: Distance, end: Distance) -> Result<(PolyLine, Distance)> {
        if start > end || start < Distance::ZERO || end < Distance::ZERO {
            bail!("Can't get a polyline slice [{}, {}]", start, end);
        }
        if start > self.length() {
            bail!(
                "Can't get a polyline slice [{}, {}] on something of length {}",
                start,
                end,
                self.length()
            );
        }
        if end - start < EPSILON_DIST {
            bail!(
                "Can't get a polyline slice [{}, {}] -- too small",
                start,
                end
            );
        }

        let mut result: Vec<Pt2D> = Vec::new();
        let mut dist_so_far = Distance::ZERO;

        for line in self.lines() {
            let length = line.length();

            // Does this line contain the first point of the slice?
            if result.is_empty() && dist_so_far + length >= start {
                result.push(line.must_dist_along(start - dist_so_far));
            }

            // Does this line contain the last point of the slice?
            if dist_so_far + length >= end {
                let last_pt = line.must_dist_along(end - dist_so_far);
                if *result.last().unwrap() == last_pt {
                    result.pop();
                }
                result.push(last_pt);
                if result.len() == 1 {
                    // TODO Understand what happened here.
                    bail!("slice({}, {}) on {} did something weird", start, end, self);
                }
                return Ok((PolyLine::new(result)?, Distance::ZERO));
            }

            // If we're in the middle, just collect the endpoint. But not if it's too close to the
            // previous point (namely, the start, which could be somewhere far along a line)
            if !result.is_empty() && *result.last().unwrap() != line.pt2() {
                result.push(line.pt2());
            }

            dist_so_far += length;
        }

        if result.is_empty() {
            bail!(
                "Slice [{}, {}] has a start too big for polyline of length {}",
                start,
                end,
                self.length()
            );
        }
        if result.len() == 1 {
            bail!(
                "Slice [{}, {}] on {} wound up a single point",
                start,
                end,
                self
            );
        }

        Ok((PolyLine::new(result)?, end - dist_so_far))
    }

    /// No excess leftover distance allowed.
    // TODO Lot of callers of this. Make safer later.
    pub fn exact_slice(&self, start: Distance, end: Distance) -> PolyLine {
        self.maybe_exact_slice(start, end).unwrap()
    }
    pub fn maybe_exact_slice(&self, start: Distance, end: Distance) -> Result<PolyLine> {
        let (pl, leftover) = self
            .slice(start, end)
            .with_context(|| format!("exact_slice({}, {}) yielded empty slice", start, end))?;
        if leftover > EPSILON_DIST {
            bail!(
                "exact_slice({}, {}) on a PL of length {} yielded leftover distance of {}",
                start,
                end,
                self.length(),
                leftover
            );
        }
        Ok(pl)
    }

    pub fn first_half(&self) -> PolyLine {
        self.exact_slice(Distance::ZERO, self.length() / 2.0)
    }

    pub fn second_half(&self) -> PolyLine {
        self.exact_slice(self.length() / 2.0, self.length())
    }

    pub fn dist_along(&self, dist_along: Distance) -> Result<(Pt2D, Angle)> {
        if dist_along < Distance::ZERO {
            bail!("dist_along {} is negative", dist_along);
        }
        if dist_along > self.length() {
            bail!("dist_along {} is longer than {}", dist_along, self.length());
        }
        if dist_along == self.length() {
            return Ok((self.last_pt(), self.last_line().angle()));
        }

        let mut dist_left = dist_along;
        for (idx, l) in self.lines().enumerate() {
            let length = l.length();
            let epsilon = if idx == self.pts.len() - 2 {
                EPSILON_DIST
            } else {
                Distance::ZERO
            };
            if dist_left <= length + epsilon {
                // Floating point errors means sometimes we ask for something slightly longer than
                // the line
                let dist = l.dist_along(dist_left).unwrap_or_else(|_| l.pt2());
                return Ok((dist, l.angle()));
            }
            dist_left -= length;
        }
        // Leaving this panic, because I haven't seen this in ages, and something is seriously
        // wrong if we get here
        panic!(
            "PolyLine dist_along of {} broke on length {}: {}",
            dist_along,
            self.length(),
            self
        );
    }
    pub fn must_dist_along(&self, dist_along: Distance) -> (Pt2D, Angle) {
        self.dist_along(dist_along).unwrap()
    }

    pub fn middle(&self) -> Pt2D {
        // If this fails, must be some super tiny line. Just return the first point in that case.
        match self.dist_along(self.length() / 2.0) {
            Ok((pt, _)) => pt,
            Err(err) => {
                println!(
                    "Guessing middle of PL with length {}: {}",
                    self.length(),
                    err
                );
                self.first_pt()
            }
        }
    }

    pub fn first_pt(&self) -> Pt2D {
        self.pts[0]
    }
    pub fn last_pt(&self) -> Pt2D {
        *self.pts.last().unwrap()
    }
    pub fn first_line(&self) -> Line {
        Line::must_new(self.pts[0], self.pts[1])
    }
    pub fn last_line(&self) -> Line {
        Line::must_new(self.pts[self.pts.len() - 2], self.pts[self.pts.len() - 1])
    }

    pub fn shift_right(&self, width: Distance) -> Result<PolyLine> {
        self.shift_with_corrections(width)
    }
    pub fn must_shift_right(&self, width: Distance) -> PolyLine {
        self.shift_right(width).unwrap()
    }

    pub fn shift_left(&self, width: Distance) -> Result<PolyLine> {
        self.shift_with_corrections(-width)
    }
    pub fn must_shift_left(&self, width: Distance) -> PolyLine {
        self.shift_left(width).unwrap()
    }

    /// Perpendicularly shifts the polyline to the right if positive or left if negative.
    pub fn shift_either_direction(&self, width: Distance) -> Result<PolyLine> {
        self.shift_with_corrections(width)
    }

    /// `self` represents some center, with `total_width`. Logically this shifts left by
    /// `total_width / 2`, then right by `width_from_left_side`, but without exasperating sharp
    /// bends.
    pub fn shift_from_center(
        &self,
        total_width: Distance,
        width_from_left_side: Distance,
    ) -> Result<PolyLine> {
        let half_width = total_width / 2.0;
        if width_from_left_side < half_width {
            self.shift_left(half_width - width_from_left_side)
        } else {
            self.shift_right(width_from_left_side - half_width)
        }
    }

    // Things to remember about shifting polylines:
    // - the length before and after probably don't match up
    // - the number of points may not match
    fn shift_with_corrections(&self, width: Distance) -> Result<PolyLine> {
        let raw = self.shift_with_sharp_angles(width, MITER_THRESHOLD)?;
        let result = PolyLine::deduping_new(raw)?;
        if result.pts.len() == self.pts.len() {
            fix_angles(self, result)
        } else {
            Ok(result)
        }
    }

    // If we start with a valid PolyLine, I'm not sure how we can ever possibly fail here, but it's
    // happening. Avoid crashing.
    fn shift_with_sharp_angles(&self, width: Distance, miter_threshold: f64) -> Result<Vec<Pt2D>> {
        if self.pts.len() == 2 {
            let l = Line::new(self.pts[0], self.pts[1])?.shift_either_direction(width);
            return Ok(vec![l.pt1(), l.pt2()]);
        }

        let mut result: Vec<Pt2D> = Vec::new();

        let mut pt3_idx = 2;
        let mut pt1_raw = self.pts[0];
        let mut pt2_raw = self.pts[1];

        loop {
            let pt3_raw = self.pts[pt3_idx];

            let l1 = Line::new(pt1_raw, pt2_raw)?.shift_either_direction(width);
            let l2 = Line::new(pt2_raw, pt3_raw)?.shift_either_direction(width);

            if pt3_idx == 2 {
                result.push(l1.pt1());
            }

            if let Some(pt2_shift) = l1.infinite().intersection(&l2.infinite()) {
                // Miter caps sometimes explode out to infinity. Hackily work around this.
                let dist_away = l1.pt1().raw_dist_to(pt2_shift);
                if dist_away < miter_threshold {
                    result.push(pt2_shift);
                } else {
                    result.push(l1.pt2());
                }
            } else {
                // When the lines are perfectly parallel, it means pt2_shift_1st == pt2_shift_2nd
                // and the original geometry is redundant.
                result.push(l1.pt2());
            }
            if pt3_idx == self.pts.len() - 1 {
                result.push(l2.pt2());
                break;
            }

            pt1_raw = pt2_raw;
            pt2_raw = pt3_raw;
            pt3_idx += 1;
        }

        assert!(result.len() == self.pts.len());
        Ok(result)
    }

    /// The resulting polygon is manually triangulated and may not have a valid outer Ring (but it
    /// usually does).
    pub fn make_polygons(&self, width: Distance) -> Polygon {
        // TODO Don't use the angle corrections yet -- they seem to do weird things.
        let side1 = match self.shift_with_sharp_angles(width / 2.0, MITER_THRESHOLD) {
            Ok(pl) => pl,
            Err(err) => {
                // TODO Circles will look extremely bizarre, but it emphasizes there's a bug
                // without just crashing
                println!("make_polygons({}) of {:?} failed: {}", width, self, err);
                return Circle::new(self.first_pt(), width).to_polygon();
            }
        };
        let mut side2 = match self.shift_with_sharp_angles(-width / 2.0, MITER_THRESHOLD) {
            Ok(pl) => pl,
            Err(err) => {
                println!("make_polygons({}) of {:?} failed: {}", width, self, err);
                return Circle::new(self.first_pt(), width).to_polygon();
            }
        };
        assert_eq!(side1.len(), side2.len());

        // Order the points so that they form a ring. No deduplication yet, though.
        let len = 2 * side1.len();
        let mut points = side1;
        side2.reverse();
        points.extend(side2);
        points.push(points[0]);
        let mut indices = Vec::new();

        // Walk along the first side, making two triangles each step. This is easy to understand
        // with a simple diagram, which I should eventually draw in ASCII art here.
        for high_idx in 1..self.pts.len() {
            indices.extend(vec![high_idx, high_idx - 1, len - high_idx]);
            indices.extend(vec![len - high_idx, len - high_idx - 1, high_idx]);
        }
        Polygon::precomputed(points, indices)
    }

    pub fn exact_dashed_polygons(
        &self,
        width: Distance,
        dash_len: Distance,
        dash_separation: Distance,
    ) -> Vec<Polygon> {
        let mut polygons: Vec<Polygon> = Vec::new();

        let total_length = self.length();

        let mut start = Distance::ZERO;
        loop {
            if start + dash_len >= total_length {
                break;
            }

            polygons.push(
                self.exact_slice(start, start + dash_len)
                    .make_polygons(width),
            );
            start += dash_len + dash_separation;
        }

        polygons
    }

    /// Don't draw the dashes too close to the ends.
    pub fn dashed_lines(
        &self,
        width: Distance,
        dash_len: Distance,
        dash_separation: Distance,
    ) -> Vec<Polygon> {
        if self.length() <= dash_separation * 2.0 + EPSILON_DIST {
            return vec![self.make_polygons(width)];
        }
        self.exact_slice(dash_separation, self.length() - dash_separation)
            .exact_dashed_polygons(width, dash_len, dash_separation)
    }

    /// Fail if the length is too short.
    pub fn maybe_make_arrow(&self, thickness: Distance, cap: ArrowCap) -> Option<Polygon> {
        let head_size = thickness * 2.0;
        let triangle_height = head_size / 2.0_f64.sqrt();

        let slice = self
            .maybe_exact_slice(Distance::ZERO, self.length() - triangle_height)
            .ok()?;

        let angle = slice.last_pt().angle_to(self.last_pt());
        let corner1 = self
            .last_pt()
            .project_away(head_size, angle.rotate_degs(-135.0));
        let corner2 = self
            .last_pt()
            .project_away(head_size, angle.rotate_degs(135.0));

        let mut pts = slice
            .shift_with_sharp_angles(thickness / 2.0, MITER_THRESHOLD)
            .ok()?;
        match cap {
            ArrowCap::Triangle => {
                pts.push(corner2);
                pts.push(self.last_pt());
                pts.push(corner1);
            }
        }
        let mut side2 = slice
            .shift_with_sharp_angles(-thickness / 2.0, MITER_THRESHOLD)
            .ok()?;
        side2.reverse();
        pts.extend(side2);
        pts.push(pts[0]);
        pts.dedup();
        Some(Ring::must_new(pts).into_polygon())
    }

    /// If the length is too short, just give up and make the thick line
    pub fn make_arrow(&self, thickness: Distance, cap: ArrowCap) -> Polygon {
        if let Some(p) = self.maybe_make_arrow(thickness, cap) {
            p
        } else {
            // Just give up and make the thick line.
            self.make_polygons(thickness)
        }
    }

    pub fn make_double_arrow(&self, thickness: Distance, cap: ArrowCap) -> Polygon {
        let head_size = thickness * 2.0;
        let triangle_height = head_size / 2.0_f64.sqrt();

        if self.length() < triangle_height * 2.0 + EPSILON_DIST {
            // Just give up and make the thick line.
            return self.make_polygons(thickness);
        }
        let slice = self.exact_slice(triangle_height, self.length() - triangle_height);

        let angle = slice.last_pt().angle_to(self.last_pt());
        let corner1 = self
            .last_pt()
            .project_away(head_size, angle.rotate_degs(-135.0));
        let corner2 = self
            .last_pt()
            .project_away(head_size, angle.rotate_degs(135.0));

        let mut pts = match slice.shift_with_sharp_angles(thickness / 2.0, MITER_THRESHOLD) {
            Ok(pl) => pl,
            Err(_) => {
                return self.make_polygons(thickness);
            }
        };
        match cap {
            ArrowCap::Triangle => {
                pts.push(corner2);
                pts.push(self.last_pt());
                pts.push(corner1);
            }
        }
        let mut side2 = match slice.shift_with_sharp_angles(-thickness / 2.0, MITER_THRESHOLD) {
            Ok(pl) => pl,
            Err(_) => {
                return self.make_polygons(thickness);
            }
        };
        side2.reverse();
        pts.extend(side2);

        let angle = self.first_pt().angle_to(slice.first_pt());
        let corner3 = self
            .first_pt()
            .project_away(head_size, angle.rotate_degs(-45.0));
        let corner4 = self
            .first_pt()
            .project_away(head_size, angle.rotate_degs(45.0));
        match cap {
            ArrowCap::Triangle => {
                pts.push(corner3);
                pts.push(self.first_pt());
                pts.push(corner4);
            }
        }

        pts.push(pts[0]);
        pts.dedup();
        Ring::must_new(pts).into_polygon()
    }

    pub fn dashed_arrow(
        &self,
        width: Distance,
        dash_len: Distance,
        dash_separation: Distance,
        cap: ArrowCap,
    ) -> Vec<Polygon> {
        let mut polygons = self.exact_dashed_polygons(width, dash_len, dash_separation);
        // And a cap on the arrow. In case the last line is long, trim it to be the dash
        // length.
        let last_line = self.last_line();
        let last_len = last_line.length();
        let arrow_line = if last_len <= dash_len {
            last_line
        } else {
            Line::must_new(
                last_line.must_dist_along(last_len - dash_len),
                last_line.pt2(),
            )
        };
        polygons.push(arrow_line.to_polyline().make_arrow(width, cap));
        polygons
    }

    /// Also return the angle of the line where the hit was found
    // TODO Also return distance along self of the hit
    pub fn intersection(&self, other: &PolyLine) -> Option<(Pt2D, Angle)> {
        assert_ne!(self, other);

        // There could be several collisions. Pick the "first" from self's perspective.
        let mut closest_intersection: Option<(Pt2D, Angle)> = None;
        let mut closest_intersection_distance: Option<Distance> = None;

        for l1 in self.lines() {
            for l2 in other.lines() {
                if let Some(pt) = l1.intersection(&l2) {
                    if let Some(new_distance) = self.get_slice_ending_at(pt).map(|pl| pl.length()) {
                        match closest_intersection_distance {
                            None => {
                                closest_intersection = Some((pt, l1.angle()));
                                closest_intersection_distance = Some(new_distance);
                            }
                            Some(existing_distance) if existing_distance > new_distance => {
                                closest_intersection = Some((pt, l1.angle()));
                                closest_intersection_distance = Some(new_distance);
                            }
                            _ => {}
                        }
                    }
                }
            }
        }

        // TODO Why is any of this necessary? Found a test case at the intersection geometry for
        // https://www.openstreetmap.org/node/274088813 where this made a huge difference!
        if closest_intersection.is_none() && self.last_pt() == other.last_pt() {
            return Some((self.last_pt(), self.last_line().angle()));
        }

        closest_intersection
    }

    // TODO Also distance along
    pub fn intersection_infinite(&self, other: &InfiniteLine) -> Option<Pt2D> {
        for l in self.lines() {
            if let Some(hit) = l.intersection_infinite(other) {
                return Some(hit);
            }
        }
        None
    }

    /// Panics if the pt is not on the polyline. Returns None if the point is the first point
    /// (meaning the slice is empty).
    pub fn get_slice_ending_at(&self, pt: Pt2D) -> Option<PolyLine> {
        if self.first_pt() == pt {
            return None;
        }

        if let Some(idx) = self.lines().position(|l| l.contains_pt(pt)) {
            let mut pts = self.pts.clone();
            pts.truncate(idx + 1);
            // Make sure the last line isn't too tiny
            if *pts.last().unwrap() == pt {
                pts.pop();
            }
            pts.push(pt);
            if pts.len() == 1 {
                return None;
            }
            Some(PolyLine::must_new(pts))
        } else {
            panic!("Can't get_slice_ending_at: {} doesn't contain {}", self, pt);
        }
    }

    /// Returns None if the point is the last point.
    pub fn get_slice_starting_at(&self, pt: Pt2D) -> Option<PolyLine> {
        if self.last_pt() == pt {
            return None;
        }

        if let Some(idx) = self.lines().position(|l| l.contains_pt(pt)) {
            let mut pts = self.pts.clone();
            pts = pts.split_off(idx + 1);
            if pt != pts[0] {
                pts.insert(0, pt);
            }
            Some(PolyLine::must_new(pts))
        } else {
            panic!(
                "Can't get_slice_starting_at: {} doesn't contain {}",
                self, pt
            );
        }
    }

    /// Same as get_slice_ending_at, but returns None if the point isn't on the polyline.
    // TODO Switch everything to this, after better understanding why this is happening at all.
    pub fn safe_get_slice_ending_at(&self, pt: Pt2D) -> Option<PolyLine> {
        if self.first_pt() == pt {
            return None;
        }

        if let Some(idx) = self.lines().position(|l| l.contains_pt(pt)) {
            let mut pts = self.pts.clone();
            pts.truncate(idx + 1);
            // Make sure the last line isn't too tiny
            if *pts.last().unwrap() == pt {
                pts.pop();
            }
            pts.push(pt);
            if pts.len() == 1 {
                return None;
            }
            Some(PolyLine::must_new(pts))
        } else {
            None
        }
    }

    /// Same as get_slice_starting_at, but returns None if the point isn't on the polyline.
    pub fn safe_get_slice_starting_at(&self, pt: Pt2D) -> Option<PolyLine> {
        if self.last_pt() == pt {
            return None;
        }

        if let Some(idx) = self.lines().position(|l| l.contains_pt(pt)) {
            let mut pts = self.pts.clone();
            pts = pts.split_off(idx + 1);
            if pt != pts[0] {
                pts.insert(0, pt);
            }
            Some(PolyLine::must_new(pts))
        } else {
            None
        }
    }

    pub fn dist_along_of_point(&self, pt: Pt2D) -> Option<(Distance, Angle)> {
        let mut dist_along = Distance::ZERO;
        for l in self.lines() {
            if let Some(dist) = l.dist_along_of_point(pt) {
                return Some((dist_along + dist, l.angle()));
            } else {
                dist_along += l.length();
            }
        }
        None
    }

    pub fn trim_to_endpts(&self, pt1: Pt2D, pt2: Pt2D) -> PolyLine {
        assert!(pt1 != pt2);
        let mut dist1 = self.dist_along_of_point(pt1).unwrap().0;
        let mut dist2 = self.dist_along_of_point(pt2).unwrap().0;
        if dist1 > dist2 {
            std::mem::swap(&mut dist1, &mut dist2);
        }
        self.exact_slice(dist1, dist2)
    }

    pub fn get_bounds(&self) -> Bounds {
        Bounds::from(&self.pts)
    }

    /// If the current line is at least this long, return it. Otherwise, extend the end of it,
    /// following the angle of the last line.
    pub fn extend_to_length(&self, min_len: Distance) -> PolyLine {
        let need_len = min_len - self.length();
        if need_len <= Distance::ZERO {
            return self.clone();
        }
        let line = self.last_line();
        // We might be extending a very tiny amount
        if let Ok(extension) = PolyLine::new(vec![
            line.pt2(),
            line.pt2().project_away(need_len, line.angle()),
        ]) {
            self.clone().must_extend(extension)
        } else {
            let mut pts = self.clone().into_points();
            pts.pop();
            pts.push(line.pt2().project_away(need_len, line.angle()));
            PolyLine::must_new(pts)
        }
    }

    /// Produces a GeoJSON linestring, optionally mapping the world-space points back to GPS.
    pub fn to_geojson(&self, gps: Option<&GPSBounds>) -> geojson::Geometry {
        let mut pts = Vec::new();
        if let Some(gps) = gps {
            for pt in gps.convert_back(&self.pts) {
                pts.push(vec![pt.x(), pt.y()]);
            }
        } else {
            for pt in &self.pts {
                pts.push(vec![pt.x(), pt.y()]);
            }
        }
        geojson::Geometry::new(geojson::Value::LineString(pts))
    }

    /// Returns the point on the polyline closest to the query.
    pub fn project_pt(&self, query: Pt2D) -> Pt2D {
        match self
            .to_geo()
            .closest_point(&geo::Point::new(query.x(), query.y()))
        {
            geo::Closest::Intersection(hit) | geo::Closest::SinglePoint(hit) => {
                Pt2D::new(hit.x(), hit.y())
            }
            geo::Closest::Indeterminate => unreachable!(),
        }
    }

    /// Returns the angle from the start to end of this polyline.
    pub fn overall_angle(&self) -> Angle {
        self.first_pt().angle_to(self.last_pt())
    }

    pub(crate) fn to_geo(&self) -> geo::LineString<f64> {
        let pts: Vec<geo::Point<f64>> = self
            .pts
            .iter()
            .map(|pt| geo::Point::new(pt.x(), pt.y()))
            .collect();
        pts.into()
    }

    /// Walk along the PolyLine, starting `buffer_ends` from the start and ending `buffer_ends`
    /// before the end. Advance in increments of `step_size`. Returns the point and angle at each
    /// step.
    pub fn step_along(&self, step_size: Distance, buffer_ends: Distance) -> Vec<(Pt2D, Angle)> {
        self.step_along_start_end(step_size, buffer_ends, buffer_ends)
    }

    /// Walk along the PolyLine, from `start_buffer` to `length - end_buffer`. Advance in
    /// increments of `step_size`. Returns the point and angle at each step.
    pub fn step_along_start_end(
        &self,
        step_size: Distance,
        start_buffer: Distance,
        end_buffer: Distance,
    ) -> Vec<(Pt2D, Angle)> {
        let mut result = Vec::new();
        let mut dist_along = start_buffer;
        let length = self.length();
        while dist_along < length - end_buffer {
            result.push(self.must_dist_along(dist_along));
            dist_along += step_size;
        }
        result
    }

    ///
    /// ```
    /// use geom::{PolyLine, Pt2D, Distance};
    ///
    /// let polyline = PolyLine::must_new(vec![
    ///     Pt2D::new(0.0, 0.0),
    ///     Pt2D::new(0.0, 10.0),
    ///     Pt2D::new(10.0, 20.0),
    /// ]);
    ///
    /// assert_eq!(
    ///     polyline.interpolate_points(Distance::meters(20.0)).points(),
    ///     &vec![
    ///         Pt2D::new(0.0, 0.0),
    ///         Pt2D::new(0.0, 10.0),
    ///         Pt2D::new(10.0, 20.0),
    ///     ]
    /// );
    ///
    /// assert_eq!(
    ///     polyline.interpolate_points(Distance::meters(10.0)).points(),
    ///     &vec![
    ///         Pt2D::new(0.0, 0.0),
    ///         Pt2D::new(0.0, 10.0),
    ///         Pt2D::new(5.0, 15.0),
    ///         Pt2D::new(10.0, 20.0),
    ///     ]
    /// );
    ///
    /// ```
    pub fn interpolate_points(&self, max_step: Distance) -> PolyLine {
        if self.pts.len() < 2 {
            return self.clone();
        }

        let mut output = vec![];
        for line in self.lines() {
            let points = (line.length() / max_step).ceil();
            let step_size = line.length() / points;
            for i in 0..(points as usize) {
                output.push(line.must_dist_along(step_size * i as f64));
            }
        }

        output.push(*self.pts.last().unwrap());

        PolyLine::new(output).unwrap()
    }

    /// An arbitrary placeholder value, when Option types aren't worthwhile
    pub fn dummy() -> PolyLine {
        PolyLine::must_new(vec![Pt2D::new(0.0, 0.0), Pt2D::new(0.1, 0.1)])
    }
}

impl fmt::Display for PolyLine {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        writeln!(f, "PolyLine::new(vec![     // length {}", self.length)?;
        for (idx, pt) in self.pts.iter().enumerate() {
            write!(f, "  Pt2D::new({}, {}),", pt.x(), pt.y())?;
            if idx > 0 {
                let line = Line::must_new(self.pts[idx - 1], *pt);
                write!(
                    f,
                    "    // {}, {} (+ {} @ {})",
                    pt.x() - self.pts[idx - 1].x(),
                    pt.y() - self.pts[idx - 1].y(),
                    line.length(),
                    line.angle(),
                )?;
            }
            writeln!(f)?;
        }
        write!(f, "])")
    }
}

fn fix_angles(orig: &PolyLine, result: PolyLine) -> Result<PolyLine> {
    let mut pts = result.pts.clone();

    // Check that the angles roughly match up between the original and shifted line
    for (idx, (orig_l, shifted_l)) in orig.lines().zip(result.lines()).enumerate() {
        let orig_angle = orig_l.angle();
        let shifted_angle = shifted_l.angle();

        if !orig_angle.approx_eq(shifted_angle, 1.0) {
            // When this happens, the rotation is usually right around 180 -- so try swapping
            // the points!
            /*println!(
                "Points changed angles from {} to {} (rot {})",
                orig_angle, shifted_angle, rot
            );*/
            pts.swap(idx, idx + 1);
            // TODO Start the fixing over. but make sure we won't infinite loop...
            //return fix_angles(orig, result);
        }
    }

    // When we swap points, length of the entire PolyLine may change! Recalculating is vital.
    PolyLine::new(pts)
}

// Also returns the duplicates.
fn to_set(pts: &[Pt2D]) -> (HashSet<HashablePt2D>, HashSet<HashablePt2D>) {
    let mut deduped = HashSet::new();
    let mut dupes = HashSet::new();
    for pt in pts {
        let pt = pt.to_hashable();
        if deduped.contains(&pt) {
            dupes.insert(pt);
        } else {
            deduped.insert(pt);
        }
    }
    (deduped, dupes)
}