1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
//! The various traffic signal generators live in the traffic signal module. Eventually, we
//! might want to move to a trait. For now, there's a single make_traffic_signal static method
//! in each generator file, which is called to generate a traffic signal of a particular flavor.
//!
//! For example, lagging_green.rs contains a one public fn:
//!     pub fn make_traffic_signal(map: &Map, i: IntersectionID)->Option<ControlTrafficSignal>

use std::collections::{BTreeSet, HashSet};

use crate::{
    ControlTrafficSignal, DrivingSide, Intersection, IntersectionCluster, IntersectionID, Map,
    MapConfig, MovementID, RoadID, Stage, StageType, TurnPriority, TurnType,
};
use geom::Duration;

mod lagging_green;

/// Applies a bunch of heuristics to a single intersection, returning the valid results in
/// best-first order. The signal configuration is only based on the roads connected to the
/// intersection.
///
/// If `enforce_manual_signals` is true, then any data from the `traffic_signal_data` crate that
/// matches the map will be validated against the current map. If the config is out-of-date, this
/// method will panic, so that whoever is running the importer can immediately fix the config.
pub fn get_possible_policies(
    map: &Map,
    id: IntersectionID,
    enforce_manual_signals: bool,
) -> Vec<(String, ControlTrafficSignal)> {
    let mut results = Vec::new();

    let i = map.get_i(id);
    if let Some(raw) = traffic_signal_data::load_all_data()
        .unwrap()
        .remove(&i.orig_id.0)
    {
        match ControlTrafficSignal::import(raw, id, map).and_then(|ts| ts.validate(i).map(|_| ts)) {
            Ok(ts) => {
                results.push(("manually specified settings".to_string(), ts));
            }
            Err(err) => {
                if enforce_manual_signals {
                    panic!(
                        "traffic_signal_data data for {} ({}) out of date, go update it: {}",
                        i.orig_id,
                        i.name(None, map),
                        err
                    );
                } else {
                    warn!(
                        "traffic_signal_data data for {} no longer valid with map edits: {}",
                        i.orig_id, err
                    );
                }
            }
        }
    }

    // As long as we're using silly heuristics for these by default, prefer shorter cycle
    // length.
    if let Some(ts) = four_way_two_stage(map, i) {
        results.push(("two-stage".to_string(), ts));
    }
    if let Some(ts) = three_way(map, i) {
        results.push(("three-stage".to_string(), ts));
    }
    if let Some(ts) = four_way_four_stage(map, i) {
        results.push(("four-stage".to_string(), ts));
    }
    if let Some(ts) = half_signal(i) {
        results.push(("half signal (2 roads with crosswalk)".to_string(), ts));
    }
    if let Some(ts) = degenerate(map, i) {
        results.push(("degenerate (2 roads)".to_string(), ts));
    }
    if let Some(ts) = lagging_green::make_traffic_signal(map, i) {
        results.push(("lagging green".to_string(), ts));
    }
    results.push(("stage per road".to_string(), stage_per_road(map, i)));
    results.push(("arbitrary assignment".to_string(), greedy_assignment(i)));
    results.push((
        "all walk, then free-for-all yield".to_string(),
        all_walk_all_yield(i),
    ));

    // Make sure all possible policies have a minimum crosswalk time enforced
    for (_, signal) in &mut results {
        for stage in &mut signal.stages {
            let crosswalks: Vec<MovementID> = stage
                .protected_movements
                .iter()
                .filter(|id| id.crosswalk)
                .cloned()
                .collect();
            for id in crosswalks {
                stage.enforce_minimum_crosswalk_time(&i.movements[&id]);
            }
        }
    }

    results.retain(|pair| pair.1.validate(i).is_ok());
    results
}

fn new(id: IntersectionID) -> ControlTrafficSignal {
    ControlTrafficSignal {
        id,
        stages: Vec::new(),
        offset: Duration::ZERO,
    }
}

fn greedy_assignment(i: &Intersection) -> ControlTrafficSignal {
    let mut ts = new(i.id);

    // Greedily partition movements into stages that only have protected movements.
    let mut remaining_movements: Vec<MovementID> = i.movements.keys().cloned().collect();
    let mut current_stage = Stage::new();
    loop {
        let add = remaining_movements
            .iter()
            .position(|&g| current_stage.could_be_protected(g, i));
        match add {
            Some(idx) => {
                current_stage
                    .protected_movements
                    .insert(remaining_movements.remove(idx));
            }
            None => {
                assert!(!current_stage.protected_movements.is_empty());
                ts.stages.push(current_stage);
                current_stage = Stage::new();
                if remaining_movements.is_empty() {
                    break;
                }
            }
        }
    }

    expand_all_stages(&mut ts, i);

    ts
}

fn degenerate(map: &Map, i: &Intersection) -> Option<ControlTrafficSignal> {
    let roads = i.get_sorted_incoming_roads(map);
    if roads.len() != 2 {
        return None;
    }
    let (r1, r2) = (roads[0], roads[1]);

    let mut ts = new(i.id);
    make_stages(
        &mut ts,
        &map.config,
        i,
        vec![vec![(vec![r1, r2], TurnType::Straight, PROTECTED)]],
    );
    Some(ts)
}

fn half_signal(i: &Intersection) -> Option<ControlTrafficSignal> {
    if i.roads.len() != 2 {
        return None;
    }

    let mut ts = new(i.id);
    let mut vehicle_stage = Stage::new();
    let mut ped_stage = Stage::new();
    for (id, movement) in &i.movements {
        if id.crosswalk {
            ped_stage.edit_movement(movement, TurnPriority::Protected);
        } else {
            vehicle_stage.edit_movement(movement, TurnPriority::Protected);
        }
    }
    vehicle_stage.stage_type = StageType::Fixed(Duration::minutes(1));
    ped_stage.stage_type = StageType::Fixed(Duration::seconds(10.0));

    ts.stages = vec![vehicle_stage, ped_stage];
    Some(ts)
}

fn three_way(map: &Map, i: &Intersection) -> Option<ControlTrafficSignal> {
    let roads = i.get_sorted_incoming_roads(map);
    if roads.len() != 3 {
        return None;
    }
    let mut ts = new(i.id);

    // Picture a T intersection. Use turn angles to figure out the "main" two roads.
    let straight = i
        .movements
        .values()
        .find(|g| g.turn_type == TurnType::Straight)?;
    let (north, south) = (straight.id.from.road, straight.id.to.road);
    let east = roads
        .into_iter()
        .find(|r| *r != north && *r != south)
        .unwrap();

    // Two-stage with no protected lefts, right turn on red, turning cars yield to peds
    make_stages(
        &mut ts,
        &map.config,
        i,
        vec![
            vec![
                (vec![north, south], TurnType::Straight, PROTECTED),
                (vec![north, south], TurnType::Right, YIELD),
                (vec![north, south], TurnType::Left, YIELD),
                (vec![east], TurnType::Right, YIELD),
                (vec![east], TurnType::Crosswalk, PROTECTED),
                // TODO Maybe UnmarkedCrossing should yield
                (vec![east], TurnType::UnmarkedCrossing, PROTECTED),
            ],
            vec![
                (vec![east], TurnType::Straight, PROTECTED),
                (vec![east], TurnType::Right, YIELD),
                (vec![east], TurnType::Left, YIELD),
                (vec![north, south], TurnType::Right, YIELD),
                (vec![north, south], TurnType::Crosswalk, PROTECTED),
                (vec![north, south], TurnType::UnmarkedCrossing, PROTECTED),
            ],
        ],
    );

    Some(ts)
}

fn four_way_four_stage(map: &Map, i: &Intersection) -> Option<ControlTrafficSignal> {
    let roads = i.get_sorted_incoming_roads(map);
    if roads.len() != 4 {
        return None;
    }

    // Just to refer to these easily, label with directions. Imagine an axis-aligned four-way.
    let (north, west, south, east) = (roads[0], roads[1], roads[2], roads[3]);

    // Four-stage with protected lefts, right turn on red (except for the protected lefts),
    // turning cars yield to peds
    let mut ts = new(i.id);
    make_stages(
        &mut ts,
        &map.config,
        i,
        vec![
            vec![
                (vec![north, south], TurnType::Straight, PROTECTED),
                (vec![north, south], TurnType::Right, YIELD),
                (vec![east, west], TurnType::Right, YIELD),
            ],
            vec![(vec![north, south], TurnType::Left, PROTECTED)],
            vec![
                (vec![east, west], TurnType::Straight, PROTECTED),
                (vec![east, west], TurnType::Right, YIELD),
                (vec![north, south], TurnType::Right, YIELD),
            ],
            vec![(vec![east, west], TurnType::Left, PROTECTED)],
        ],
    );
    Some(ts)
}

fn four_way_two_stage(map: &Map, i: &Intersection) -> Option<ControlTrafficSignal> {
    let roads = i.get_sorted_incoming_roads(map);
    if roads.len() != 4 {
        return None;
    }

    // Just to refer to these easily, label with directions. Imagine an axis-aligned four-way.
    let (north, west, south, east) = (roads[0], roads[1], roads[2], roads[3]);

    // Two-stage with no protected lefts, right turn on red, turning cars yielding to peds
    let mut ts = new(i.id);
    make_stages(
        &mut ts,
        &map.config,
        i,
        vec![
            vec![
                (vec![north, south], TurnType::Straight, PROTECTED),
                (vec![north, south], TurnType::Right, YIELD),
                (vec![north, south], TurnType::Left, YIELD),
                (vec![east, west], TurnType::Right, YIELD),
            ],
            vec![
                (vec![east, west], TurnType::Straight, PROTECTED),
                (vec![east, west], TurnType::Right, YIELD),
                (vec![east, west], TurnType::Left, YIELD),
                (vec![north, south], TurnType::Right, YIELD),
            ],
        ],
    );
    Some(ts)
}

fn all_walk_all_yield(i: &Intersection) -> ControlTrafficSignal {
    let mut ts = new(i.id);

    let mut all_walk = Stage::new();
    let mut all_yield = Stage::new();

    for movement in i.movements.values() {
        if movement.turn_type.pedestrian_crossing() {
            all_walk.protected_movements.insert(movement.id);
        } else {
            all_yield.yield_movements.insert(movement.id);
        }
    }

    ts.stages = vec![all_walk, all_yield];
    ts
}

fn stage_per_road(map: &Map, i: &Intersection) -> ControlTrafficSignal {
    let mut ts = new(i.id);

    let sorted_roads = i.get_roads_sorted_by_incoming_angle(map);
    for idx in 0..sorted_roads.len() {
        let r = sorted_roads[idx];
        let adj1 = *abstutil::wraparound_get(&sorted_roads, (idx as isize) - 1);
        let adj2 = *abstutil::wraparound_get(&sorted_roads, (idx as isize) + 1);

        let mut stage = Stage::new();
        for movement in i.movements.values() {
            if movement.turn_type.pedestrian_crossing() {
                if movement.id.from.road == adj1 || movement.id.from.road == adj2 {
                    stage.protected_movements.insert(movement.id);
                }
            } else if movement.id.from.road == r {
                stage.yield_movements.insert(movement.id);
            }
        }
        // Might have a one-way outgoing road. Skip it.
        if !stage.yield_movements.is_empty() {
            ts.stages.push(stage);
        }
    }
    ts
}

// Add all possible protected movements to existing stages.
fn expand_all_stages(ts: &mut ControlTrafficSignal, i: &Intersection) {
    for stage in ts.stages.iter_mut() {
        for g in i.movements.keys() {
            if stage.could_be_protected(*g, i) {
                stage.protected_movements.insert(*g);
            }
        }
    }
}

const PROTECTED: bool = true;
const YIELD: bool = false;

fn make_stages(
    ts: &mut ControlTrafficSignal,
    map_config: &MapConfig,
    i: &Intersection,
    stage_specs: Vec<Vec<(Vec<RoadID>, TurnType, bool)>>,
) {
    for specs in stage_specs {
        let mut stage = Stage::new();
        let mut explicit_crosswalks = false;
        for (roads, mut turn_type, protected) in specs.iter() {
            // The heuristics are written assuming right turns are easy and lefts are hard, so
            // invert in the UK.
            if map_config.driving_side == DrivingSide::Left {
                if turn_type == TurnType::Right {
                    turn_type = TurnType::Left;
                } else if turn_type == TurnType::Left {
                    turn_type = TurnType::Right;
                }
            }
            if turn_type.pedestrian_crossing() {
                explicit_crosswalks = true;
            }

            for movement in i.movements.values() {
                if !roads.contains(&movement.id.from.road) || turn_type != movement.turn_type {
                    continue;
                }

                // If turn on red is banned, ignore movements when the stage has
                // no protected (green) movement from that road
                if !map_config.turn_on_red
                    && !specs.iter().any(|(other_roads, _, other_protected)| {
                        *other_protected && other_roads.contains(&movement.id.from.road)
                    })
                {
                    continue;
                }

                stage.edit_movement(
                    movement,
                    if *protected {
                        TurnPriority::Protected
                    } else {
                        TurnPriority::Yield
                    },
                );
            }
        }

        // If the specification didn't explicitly include crosswalks, add them in here. Some
        // crosswalks stretch across multiple roads when some parts of a road are missing a
        // sidewalk, so it's hard to specify them in all cases.
        if !explicit_crosswalks {
            // TODO If a stage has no protected turns at all, this adds the crosswalk to multiple
            // stages in a pretty weird way. It'd be better to add to just one stage -- the one
            // with the least conflicting yields.
            for movement in i.movements.values() {
                if movement.turn_type.pedestrian_crossing()
                    && stage.could_be_protected(movement.id, i)
                {
                    stage.edit_movement(movement, TurnPriority::Protected);
                }
            }
        }

        // Filter out empty stages if they happen.
        if stage.protected_movements.is_empty() && stage.yield_movements.is_empty() {
            continue;
        }

        ts.stages.push(stage);
    }

    if ts.stages.len() > 1 {
        // At intersections of one-ways like Terry and Denny, we could get away with a single stage.
        // Really weak form of this now, just collapsing the one smallest stage.
        let smallest = ts
            .stages
            .iter()
            .min_by_key(|p| p.protected_movements.len() + p.yield_movements.len())
            .cloned()
            .unwrap();
        if ts.stages.iter().any(|p| {
            p != &smallest
                && smallest
                    .protected_movements
                    .is_subset(&p.protected_movements)
                && smallest.yield_movements.is_subset(&p.yield_movements)
        }) {
            ts.stages.retain(|p| p != &smallest);
        }
    }
}

/// Simple second-pass after generating all signals. Find pairs of traffic signals very close to
/// each other with 2 stages each, see if the primary movement of the first stages lead to each
/// other, and flip the order of stages if not. This is often wrong when the most common movement is
/// actually turning left then going straight (near Mercer for example), but not sure how we could
/// know that without demand data.
pub fn synchronize(map: &mut Map) {
    let mut seen = HashSet::new();
    let mut pairs = Vec::new();
    let handmapped = traffic_signal_data::load_all_data().unwrap();
    for i in map.all_intersections() {
        if !i.is_traffic_signal() || seen.contains(&i.id) || handmapped.contains_key(&i.orig_id.0) {
            continue;
        }
        if let Some(list) = IntersectionCluster::autodetect(i.id, map) {
            let list = list.into_iter().collect::<Vec<_>>();
            if list.len() == 2
                && map.get_traffic_signal(list[0]).stages.len() == 2
                && map.get_traffic_signal(list[1]).stages.len() == 2
            {
                pairs.push((list[0], list[1]));
                seen.insert(list[0]);
                seen.insert(list[1]);
            }
        }
    }

    for (i1, i2) in pairs {
        let ts1 = map.get_traffic_signal(i1);
        let ts2 = map.get_traffic_signal(i2);
        let flip1 = ts1.stages[0].protected_movements.iter().any(|m1| {
            !m1.crosswalk
                && ts2.stages[1]
                    .protected_movements
                    .iter()
                    .any(|m2| !m2.crosswalk && (m1.to == m2.from || m1.from == m2.to))
        });
        let flip2 = ts1.stages[1].protected_movements.iter().any(|m1| {
            !m1.crosswalk
                && ts2.stages[0]
                    .protected_movements
                    .iter()
                    .any(|m2| !m2.crosswalk && (m1.to == m2.from || m1.from == m2.to))
        });
        if flip1 || flip2 {
            info!(
                "Flipping stage order of {} and {} to synchronize them",
                i1, i2
            );
            map.traffic_signals.get_mut(&i1).unwrap().stages.swap(0, 1);
        }
    }
}