1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
use std::collections::{BTreeSet, HashMap, HashSet};
use std::fmt;

use anyhow::Result;
use serde::{Deserialize, Serialize};

use abstutil::wraparound_get;
use geom::{Polygon, Pt2D, Ring};

use crate::{
    CommonEndpoint, Direction, LaneID, Map, PathConstraints, RoadID, RoadSideID, SideOfRoad,
};

/// A block is defined by a perimeter that traces along the sides of roads. Inside the perimeter,
/// the block may contain buildings and interior roads. In the simple case, a block represents a
/// single "city block", with no interior roads. It may also cover a "neighborhood", where the
/// perimeter contains some "major" and the interior consists only of "minor" roads.
// TODO Maybe "block" is a misleading term. "Contiguous road trace area"?
#[derive(Clone, Serialize, Deserialize)]
pub struct Block {
    pub perimeter: Perimeter,
    /// The polygon covers the interior of the block.
    pub polygon: Polygon,
}

/// A sequence of roads in order, beginning and ending at the same place. No "crossings" -- tracing
/// along this sequence should geometrically yield a simple polygon.
// TODO Handle the map boundary. Sometimes this perimeter should be broken up by border
// intersections or possibly by water/park areas.
#[derive(Clone, Serialize, Deserialize)]
pub struct Perimeter {
    pub roads: Vec<RoadSideID>,
    /// These roads exist entirely within the perimeter
    pub interior: BTreeSet<RoadID>,
}

impl Perimeter {
    /// Starting at any lane, snap to the nearest side of that road, then begin tracing a single
    /// block, with no interior roads. This will fail if a map boundary is reached. The results are
    /// unusual when crossing the entrance to a tunnel or bridge, and so `skip` is used to avoid
    /// tracing there.
    pub fn single_block(map: &Map, start: LaneID, skip: &HashSet<RoadID>) -> Result<Perimeter> {
        let mut roads = Vec::new();
        let start_road_side = map.get_l(start).get_nearest_side_of_road(map);

        if skip.contains(&start_road_side.road) {
            bail!("Started on a road we shouldn't trace");
        }

        // We need to track which side of the road we're at, but also which direction we're facing
        let mut current_road_side = start_road_side;
        let mut current_intersection = map.get_l(start).dst_i;
        loop {
            let i = map.get_i(current_intersection);
            if i.is_border() {
                bail!("hit the map boundary");
            }
            let mut sorted_roads = i.get_road_sides_sorted_by_incoming_angle(map);
            sorted_roads.retain(|id| !skip.contains(&id.road));
            let idx = sorted_roads
                .iter()
                .position(|x| *x == current_road_side)
                .unwrap() as isize;
            // Do we go clockwise or counter-clockwise around the intersection? Well, unless we're
            // at a dead-end, we want to avoid the other side of the same road.
            let mut next = *wraparound_get(&sorted_roads, idx + 1);
            assert_ne!(next, current_road_side);
            if next.road == current_road_side.road {
                next = *wraparound_get(&sorted_roads, idx - 1);
                assert_ne!(next, current_road_side);
                if next.road == current_road_side.road {
                    // We must be at a dead-end
                    assert_eq!(2, sorted_roads.len());
                }
            }
            roads.push(current_road_side);
            current_road_side = next;
            current_intersection = map
                .get_r(current_road_side.road)
                .other_endpt(current_intersection);

            if current_road_side == start_road_side {
                roads.push(start_road_side);
                break;
            }
        }
        assert_eq!(roads[0], *roads.last().unwrap());
        Ok(Perimeter {
            roads,
            interior: BTreeSet::new(),
        })
    }

    /// This calculates all single block perimeters for the entire map. The resulting list does not
    /// cover roads near the map boundary.
    pub fn find_all_single_blocks(map: &Map) -> Vec<Perimeter> {
        let skip = Perimeter::find_roads_to_skip_tracing(map);

        let mut seen = HashSet::new();
        let mut perimeters = Vec::new();
        for lane in map.all_lanes() {
            let side = lane.get_nearest_side_of_road(map);
            if seen.contains(&side) {
                continue;
            }
            match Perimeter::single_block(map, lane.id, &skip) {
                Ok(perimeter) => {
                    seen.extend(perimeter.roads.clone());
                    perimeters.push(perimeter);
                }
                Err(err) => {
                    // The logs are quite spammy and not helpful yet, since they're all expected
                    // cases near the map boundary
                    if false {
                        warn!("Failed from {}: {}", lane.id, err);
                    }
                    // Don't try again
                    seen.insert(side);
                }
            }
        }
        perimeters
    }

    /// Blockfinding is specialized for the LTN tool, so non-driveable roads (cycleways and light
    /// rail) are considered invisible and can't be on a perimeter. Previously, there were also
    /// some heuristics here to try to skip certain bridges/tunnels that break the planarity of
    /// blocks.
    pub fn find_roads_to_skip_tracing(map: &Map) -> HashSet<RoadID> {
        let mut skip = HashSet::new();
        for r in map.all_roads() {
            // TODO Redundant
            if r.is_light_rail() {
                skip.insert(r.id);
            } else if !PathConstraints::Car.can_use_road(r, map) {
                skip.insert(r.id);
            }
        }
        skip
    }

    /// A perimeter has the first and last road matching up, but that's confusing to
    /// work with. Temporarily undo that.
    fn undo_invariant(&mut self) {
        assert_eq!(Some(self.roads[0]), self.roads.pop());
    }

    /// Restore the first=last invariant. Methods may temporarily break this, but must restore it
    /// before returning.
    fn restore_invariant(&mut self) {
        self.roads.push(self.roads[0]);
    }

    /// Try to merge two blocks. Returns true if this is successful, which will only be when the
    /// blocks are adjacent, but the merge wouldn't create an interior "hole".
    ///
    /// Note this may modify both perimeters and still return `false`. The modification is just to
    /// rotate the order of the road loop; this doesn't logically change the perimeter.
    ///
    /// TODO Due to https://github.com/a-b-street/abstreet/issues/841, it seems like rotation
    /// sometimes breaks `to_block`, so for now, always revert to the original upon failure.
    // TODO Would it be cleaner to return a Result here and always restore the invariant?
    fn try_to_merge(
        &mut self,
        map: &Map,
        other: &mut Perimeter,
        debug_failures: bool,
        use_expensive_blockfinding: bool,
    ) -> bool {
        let orig_self = self.clone();
        let orig_other = other.clone();

        self.undo_invariant();
        other.undo_invariant();

        // Calculate common roads
        let roads1: HashSet<RoadID> = self.roads.iter().map(|id| id.road).collect();
        let roads2: HashSet<RoadID> = other.roads.iter().map(|id| id.road).collect();
        let common: HashSet<RoadID> = roads1.intersection(&roads2).cloned().collect();
        if common.is_empty() {
            if debug_failures {
                warn!("No common roads");
            }
            *self = orig_self;
            *other = orig_other;
            return false;
        }

        // "Rotate" the order of roads, so that all of the overlapping roads are at the end of the
        // list. If the entire perimeter is surrounded by the other, then no rotation needed.
        if self.roads.len() != common.len() {
            while common.contains(&self.roads[0].road)
                || !common.contains(&self.roads.last().unwrap().road)
            {
                self.roads.rotate_left(1);
            }
        }
        // Same thing with the other
        if other.roads.len() != common.len() {
            while common.contains(&other.roads[0].road)
                || !common.contains(&other.roads.last().unwrap().road)
            {
                other.roads.rotate_left(1);
            }
        }

        if debug_failures {
            println!("\nCommon: {:?}\n{:?}\n{:?}", common, self, other);
        }

        if self.reverse_to_fix_winding_order(map, other) {
            // Revert, reverse one, and try again. This should never recurse.
            self.restore_invariant();
            other.restore_invariant();
            self.roads.reverse();
            return self.try_to_merge(map, other, debug_failures, use_expensive_blockfinding);
        }

        // Check if all of the common roads are at the end of each perimeter,
        // so we can "blindly" do this snipping. If this isn't true, then the overlapping portions
        // are split by non-overlapping roads. This happens when merging the two blocks would
        // result in a "hole."
        let mut ok = true;
        for id in self.roads.iter().rev().take(common.len()) {
            if !common.contains(&id.road) {
                if debug_failures {
                    warn!(
                        "The common roads on the first aren't consecutive, near {:?}",
                        id
                    );
                }
                ok = false;
                break;
            }
        }
        for id in other.roads.iter().rev().take(common.len()) {
            if !common.contains(&id.road) {
                if debug_failures {
                    warn!(
                        "The common roads on the second aren't consecutive, near {:?}",
                        id
                    );
                }
                ok = false;
                break;
            }
        }
        if !ok {
            *self = orig_self;
            *other = orig_other;
            return false;
        }

        // Very straightforward snipping now
        for _ in 0..common.len() {
            self.roads.pop().unwrap();
            other.roads.pop().unwrap();
        }

        // This order assumes everything is clockwise to start with.
        self.roads.append(&mut other.roads);

        // TODO This case was introduced with find_roads_to_skip_tracing. Not sure why.
        if self.roads.is_empty() {
            if debug_failures {
                warn!("Two perimeters had every road in common: {:?}", common);
            }
            *self = orig_self;
            *other = orig_other;
            return false;
        }

        self.interior.extend(common);
        self.interior.append(&mut other.interior);

        // Restore the first=last invariant
        self.restore_invariant();

        // Make sure we didn't wind up with any internal dead-ends
        self.collapse_deadends();

        // TODO Something in this method is buggy and produces invalid merges.
        // https://github.com/a-b-street/abstreet/issues/841
        // First try a lightweight detection for problems. If the caller detects the net result is
        // invalid, they'll override this flag and try again.
        let err = if use_expensive_blockfinding {
            self.clone().to_block(map).err()
        } else {
            self.check_continuity(map).err()
        };
        if let Some(err) = err {
            debug!(
                "A merged perimeter couldn't be blockified: {}. {:?}",
                err, self
            );
            *self = orig_self;
            *other = orig_other;
            return false;
        }

        true
    }

    fn check_continuity(&self, map: &Map) -> Result<()> {
        for pair in self.roads.windows(2) {
            let r1 = map.get_r(pair[0].road);
            let r2 = map.get_r(pair[1].road);
            if r1.common_endpoint(r2) == CommonEndpoint::None {
                bail!("Part of the perimeter goes from {:?} to {:?}, but they don't share a common endpoint", pair[0], pair[1]);
            }
        }
        Ok(())
    }

    /// Should we reverse one perimeter to match the winding order?
    ///
    /// This is only meant to be called in the middle of try_to_merge. It assumes both perimeters
    /// have already been rotated so the common roads are at the end. The invariant of first=last
    /// is not true.
    fn reverse_to_fix_winding_order(&self, map: &Map, other: &Perimeter) -> bool {
        // Using geometry to determine winding order is brittle. Look for any common road, and see
        // where it points.
        let common_example = self.roads.last().unwrap().road;
        let last_common_for_self = match map
            .get_r(common_example)
            .common_endpoint(map.get_r(wraparound_get(&self.roads, self.roads.len() as isize).road))
        {
            CommonEndpoint::One(i) => i,
            CommonEndpoint::Both => {
                // If the common road is a loop on the intersection, then this perimeter must be of
                // length 2 (or 3 with the invariant), and reversing it is meaningless.
                return false;
            }
            CommonEndpoint::None => unreachable!(),
        };

        // Find the same road in the other perimeter
        let other_idx = other
            .roads
            .iter()
            .position(|x| x.road == common_example)
            .unwrap() as isize;
        let last_common_for_other = match map
            .get_r(common_example)
            .common_endpoint(map.get_r(wraparound_get(&other.roads, other_idx + 1).road))
        {
            CommonEndpoint::One(i) => i,
            CommonEndpoint::Both => {
                return false;
            }
            CommonEndpoint::None => unreachable!(),
        };
        last_common_for_self == last_common_for_other
    }

    /// Try to merge all given perimeters. If successful, only one perimeter will be returned.
    /// Perimeters are never "destroyed" -- if not merged, they'll appear in the results. If
    /// `stepwise_debug` is true, returns after performing just one merge.
    pub fn merge_all(
        map: &Map,
        mut input: Vec<Perimeter>,
        stepwise_debug: bool,
        use_expensive_blockfinding: bool,
    ) -> Vec<Perimeter> {
        // Internal dead-ends break merging, so first collapse of those. Do this before even
        // looking for neighbors, since find_common_roads doesn't understand dead-ends.
        for p in &mut input {
            p.collapse_deadends();
        }

        loop {
            let mut debug = false;
            let mut results: Vec<Perimeter> = Vec::new();
            let num_input = input.len();
            'INPUT: for mut perimeter in input {
                if debug {
                    results.push(perimeter);
                    continue;
                }

                for other in &mut results {
                    if other.try_to_merge(
                        map,
                        &mut perimeter,
                        stepwise_debug,
                        use_expensive_blockfinding,
                    ) {
                        // To debug, return after any single change
                        debug = stepwise_debug;
                        continue 'INPUT;
                    }
                }

                // No match
                results.push(perimeter);
            }

            // Should we try merging again?
            if results.len() > 1 && results.len() < num_input && !stepwise_debug {
                input = results;
                continue;
            }
            return results;
        }
    }

    /// If the perimeter follows any dead-end roads, "collapse" them and instead make the perimeter
    /// contain the dead-end.
    pub fn collapse_deadends(&mut self) {
        let orig = self.clone();
        self.undo_invariant();

        // TODO Workaround https://github.com/a-b-street/abstreet/issues/834. If this is a loop
        // around a disconnected fragment of road, don't touch it
        if self.roads.len() == 2 && self.roads[0].road == self.roads[1].road {
            self.restore_invariant();
            return;
        }

        // If the dead-end straddles the loop, it's confusing. Just rotate until that's not true.
        while self.roads[0].road == self.roads.last().unwrap().road {
            self.roads.rotate_left(1);
        }

        // TODO This won't handle a deadend that's more than 1 segment long
        let mut roads: Vec<RoadSideID> = Vec::new();
        for id in self.roads.drain(..) {
            if Some(id.road) == roads.last().map(|id| id.road) {
                roads.pop();
                self.interior.insert(id.road);
            } else {
                roads.push(id);
            }
        }

        self.roads = roads;
        if self.roads.is_empty() {
            // TODO This case was introduced with find_roads_to_skip_tracing. Not sure why.
            *self = orig;
            return;
        }
        self.restore_invariant();
    }

    /// Consider the perimeters as a graph, with adjacency determined by sharing any road in common.
    /// Partition adjacent perimeters, subject to the predicate. Each partition should produce a
    /// single result with `merge_all`.
    pub fn partition_by_predicate<F: Fn(RoadID) -> bool>(
        input: Vec<Perimeter>,
        predicate: F,
    ) -> Vec<Vec<Perimeter>> {
        let mut road_to_perimeters: HashMap<RoadID, Vec<usize>> = HashMap::new();
        for (idx, perimeter) in input.iter().enumerate() {
            for id in &perimeter.roads {
                road_to_perimeters
                    .entry(id.road)
                    .or_insert_with(Vec::new)
                    .push(idx);
            }
        }

        // Start at one perimeter, floodfill to adjacent perimeters, subject to the predicate.
        // Returns the indices of everything in that component.
        let floodfill = |start: usize| -> BTreeSet<usize> {
            let mut visited = BTreeSet::new();
            let mut queue = vec![start];
            while !queue.is_empty() {
                let current = queue.pop().unwrap();
                if visited.contains(&current) {
                    continue;
                }
                visited.insert(current);
                for id in &input[current].roads {
                    if predicate(id.road) {
                        queue.extend(road_to_perimeters[&id.road].clone());
                    }
                }
            }
            visited
        };

        let mut partitions: Vec<BTreeSet<usize>> = Vec::new();
        let mut finished: HashSet<usize> = HashSet::new();
        for start in 0..input.len() {
            if finished.contains(&start) {
                continue;
            }
            let partition = floodfill(start);
            finished.extend(partition.clone());
            partitions.push(partition);
        }

        // Map the indices back to the actual perimeters.
        let mut perimeters: Vec<Option<Perimeter>> = input.into_iter().map(Some).collect();
        let mut results = Vec::new();
        for indices in partitions {
            let mut partition = Vec::new();
            for idx in indices {
                partition.push(perimeters[idx].take().unwrap());
            }
            results.push(partition);
        }
        // Sanity check
        for maybe_perimeter in perimeters {
            assert!(maybe_perimeter.is_none());
        }
        results
    }

    /// Assign each perimeter one of `num_colors`, such that no two adjacent perimeters share the
    /// same color. May fail. The resulting colors are expressed as `[0, num_colors)`.
    pub fn calculate_coloring(input: &[Perimeter], num_colors: usize) -> Option<Vec<usize>> {
        let mut road_to_perimeters: HashMap<RoadID, Vec<usize>> = HashMap::new();
        for (idx, perimeter) in input.iter().enumerate() {
            for id in &perimeter.roads {
                road_to_perimeters
                    .entry(id.road)
                    .or_insert_with(Vec::new)
                    .push(idx);
            }
        }

        // Greedily fill out a color for each perimeter, in the same order as the input
        let mut assigned_colors = Vec::new();
        for (this_idx, perimeter) in input.iter().enumerate() {
            let mut available_colors: Vec<bool> =
                std::iter::repeat(true).take(num_colors).collect();
            // Find all neighbors
            for id in &perimeter.roads {
                for other_idx in &road_to_perimeters[&id.road] {
                    // We assign colors in order, so any neighbor index smaller than us has been
                    // chosen
                    if *other_idx < this_idx {
                        available_colors[assigned_colors[*other_idx]] = false;
                    }
                }
            }
            if let Some(color) = available_colors.iter().position(|x| *x) {
                assigned_colors.push(color);
            } else {
                // Too few colors?
                return None;
            }
        }
        Some(assigned_colors)
    }

    pub fn to_block(self, map: &Map) -> Result<Block> {
        // Trace along the perimeter and build the polygon
        let mut pts: Vec<Pt2D> = Vec::new();
        let mut first_intersection = None;
        for pair in self.roads.windows(2) {
            let lane1 = pair[0].get_outermost_lane(map);
            let road1 = map.get_parent(lane1.id);
            let lane2 = pair[1].get_outermost_lane(map);
            // If lane1 and lane2 are the same, then it just means we found a dead-end road with
            // exactly one lane, which is usually a footway or cycleway that legitimately is a
            // dead-end, or connects to some other road we didn't import. We'll just trace around
            // it like a normal dead-end road.
            let mut pl = match pair[0].side {
                SideOfRoad::Right => road1.center_pts.must_shift_right(road1.get_half_width()),
                SideOfRoad::Left => road1.center_pts.must_shift_left(road1.get_half_width()),
            };
            if lane1.dir == Direction::Back {
                pl = pl.reversed();
            }
            let keep_lane_orientation = if pair[0].road == pair[1].road {
                // We're doubling back at a dead-end. Always follow the orientation of the lane.
                true
            } else {
                match lane1.common_endpoint(lane2) {
                    CommonEndpoint::One(i) => i == lane1.dst_i,
                    CommonEndpoint::Both => {
                        // Two different roads link the same two intersections. I don't think we
                        // can decide the order of points other than seeing which endpoint is
                        // closest to our last point.
                        if let Some(last) = pts.last() {
                            last.dist_to(pl.first_pt()) < last.dist_to(pl.last_pt())
                        } else {
                            // The orientation doesn't matter
                            true
                        }
                    }
                    CommonEndpoint::None => bail!(
                        "{} and {} don't share a common endpoint",
                        lane1.id,
                        lane2.id
                    ),
                }
            };
            if !keep_lane_orientation {
                pl = pl.reversed();
            }

            // Before we add this road's points, try to trace along the polygon's boundary. Usually
            // this has no effect (we'll dedupe points), but sometimes there's an extra curve.
            //
            // Note this logic is similar to how we find SharedSidewalkCorners. Don't rely on that
            // existing, since the outermost lane mightn't be a sidewalk.
            //
            // If the ring.doubles_back(), don't bother. If we tried to trace the boundary, it
            // usually breaks the final Ring we produce. Better to skip bad intersection polygons
            // and still produce a reasonable looking block.
            let prev_i = if keep_lane_orientation {
                lane1.src_i
            } else {
                lane1.dst_i
            };
            if first_intersection.is_none() {
                first_intersection = Some(prev_i);
            }
            if let Some(last_pt) = pts.last() {
                let prev_i = map.get_i(prev_i);
                if let Some(ring) = prev_i.polygon.get_outer_ring() {
                    if !ring.doubles_back() {
                        // At dead-ends, trace around the intersection on the longer side
                        let longer = prev_i.is_deadend_for_driving(map);
                        if let Some(slice) = ring.get_slice_between(*last_pt, pl.first_pt(), longer)
                        {
                            pts.extend(slice.into_points());
                        }
                    }
                }
            }

            pts.extend(pl.into_points());
        }
        // Do the intersection boundary tracing for the last piece. We didn't know enough to do it
        // the first time.
        let first_intersection = map.get_i(first_intersection.unwrap());
        if let Some(ring) = first_intersection.polygon.get_outer_ring() {
            if !ring.doubles_back() {
                let longer = first_intersection.is_deadend_for_driving(map);
                if let Some(slice) = ring.get_slice_between(*pts.last().unwrap(), pts[0], longer) {
                    pts.extend(slice.into_points());
                }
            }
        }
        pts.push(pts[0]);
        pts.dedup();
        let polygon = Ring::new(pts)?.into_polygon();
        // TODO To debug anyway, can use buggy_new, but there's pretty much always a root problem
        // in the map geometry that should be properly fixed.
        //let polygon = Polygon::buggy_new(pts);

        Ok(Block {
            perimeter: self,
            polygon,
        })
    }

    /// Does this perimeter completely enclose the other?
    pub fn contains(&self, other: &Perimeter) -> bool {
        other
            .roads
            .iter()
            .all(|id| self.interior.contains(&id.road) || self.roads.contains(id))
    }

    /// Shrinks or expands the perimeter by tracing the opposite side of the road.
    pub fn flip_side_of_road(mut self) -> Self {
        for road_side in &mut self.roads {
            *road_side = road_side.other_side();
        }
        self
    }
}

impl fmt::Debug for Perimeter {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "Perimeter:")?;
        for id in &self.roads {
            writeln!(f, "- {:?} of {}", id.side, id.road)?;
        }
        Ok(())
    }
}