use std::convert::TryFrom;
use std::fmt;
use geo::algorithm::area::Area;
use geo::algorithm::convexhull::ConvexHull;
use geo_booleanop::boolean::BooleanOp;
use serde::{Deserialize, Serialize};
use crate::{Angle, Bounds, Distance, HashablePt2D, PolyLine, Pt2D, Ring};
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Polygon {
points: Vec<Pt2D>,
indices: Vec<u16>,
rings: Option<Vec<Ring>>,
}
impl Polygon {
pub fn buggy_new(orig_pts: Vec<Pt2D>) -> Polygon {
assert!(orig_pts.len() >= 3);
let mut vertices = Vec::new();
for pt in &orig_pts {
vertices.push(pt.x());
vertices.push(pt.y());
}
let indices = downsize(earcutr::earcut(&vertices, &Vec::new(), 2));
Polygon {
points: orig_pts.clone(),
indices,
rings: None,
}
}
pub fn with_holes(outer: Ring, mut inner: Vec<Ring>) -> Polygon {
inner.insert(0, outer);
let geojson_style: Vec<Vec<Vec<f64>>> = inner
.iter()
.map(|ring| {
ring.points()
.into_iter()
.map(|pt| vec![pt.x(), pt.y()])
.collect()
})
.collect();
let (vertices, holes, dims) = earcutr::flatten(&geojson_style);
let indices = downsize(earcutr::earcut(&vertices, &holes, dims));
Polygon {
points: vertices
.chunks(2)
.map(|pair| Pt2D::new(pair[0], pair[1]))
.collect(),
indices,
rings: if inner.len() == 1 { None } else { Some(inner) },
}
}
pub fn from_geojson(raw: &Vec<Vec<Vec<f64>>>) -> Polygon {
let (vertices, holes, dims) = earcutr::flatten(raw);
let indices = downsize(earcutr::earcut(&vertices, &holes, dims));
Polygon {
points: vertices
.chunks(2)
.map(|pair| Pt2D::new(pair[0], pair[1]))
.collect(),
indices,
rings: None,
}
}
pub fn precomputed(points: Vec<Pt2D>, indices: Vec<usize>) -> Polygon {
assert!(indices.len() % 3 == 0);
Polygon {
points,
indices: downsize(indices),
rings: None,
}
}
pub fn from_triangle(tri: &Triangle) -> Polygon {
Polygon {
points: vec![tri.pt1, tri.pt2, tri.pt3, tri.pt1],
indices: vec![0, 1, 2],
rings: None,
}
}
pub fn triangles(&self) -> Vec<Triangle> {
let mut triangles: Vec<Triangle> = Vec::new();
for slice in self.indices.chunks_exact(3) {
triangles.push(Triangle::new(
self.points[slice[0] as usize],
self.points[slice[1] as usize],
self.points[slice[2] as usize],
));
}
triangles
}
pub fn raw_for_rendering(&self) -> (&Vec<Pt2D>, &Vec<u16>) {
(&self.points, &self.indices)
}
pub fn contains_pt(&self, pt: Pt2D) -> bool {
self.triangles().into_iter().any(|tri| tri.contains_pt(pt))
}
pub fn get_bounds(&self) -> Bounds {
Bounds::from(&self.points)
}
fn transform<F: Fn(&Pt2D) -> Pt2D>(&self, f: F) -> Polygon {
Polygon {
points: self.points.iter().map(&f).collect(),
indices: self.indices.clone(),
rings: self.rings.as_ref().map(|rings| {
rings
.iter()
.filter_map(|ring| Ring::new(ring.points().iter().map(&f).collect()).ok())
.collect()
}),
}
}
pub fn translate(&self, dx: f64, dy: f64) -> Polygon {
self.transform(|pt| pt.offset(dx, dy))
}
pub fn scale(&self, factor: f64) -> Polygon {
self.transform(|pt| Pt2D::new(pt.x() * factor, pt.y() * factor))
}
pub fn rotate(&self, angle: Angle) -> Polygon {
self.rotate_around(angle, self.center())
}
pub fn rotate_around(&self, angle: Angle, pivot: Pt2D) -> Polygon {
self.transform(|pt| {
let origin_pt = Pt2D::new(pt.x() - pivot.x(), pt.y() - pivot.y());
let (sin, cos) = angle.normalized_radians().sin_cos();
Pt2D::new(
pivot.x() + origin_pt.x() * cos - origin_pt.y() * sin,
pivot.y() + origin_pt.y() * cos + origin_pt.x() * sin,
)
})
}
pub fn points(&self) -> &Vec<Pt2D> {
if let Some(ref rings) = self.rings {
rings[0].points()
} else {
&self.points
}
}
pub fn into_points(mut self) -> Vec<Pt2D> {
if let Some(mut rings) = self.rings.take() {
rings.remove(0).into_points()
} else {
self.points
}
}
pub fn into_ring(self) -> Ring {
Ring::must_new(self.into_points())
}
pub fn center(&self) -> Pt2D {
let mut pts: Vec<HashablePt2D> = self.points.iter().map(|pt| pt.to_hashable()).collect();
pts.sort();
pts.dedup();
Pt2D::center(&pts.iter().map(|pt| pt.to_pt2d()).collect())
}
pub fn rectangle(width: f64, height: f64) -> Polygon {
Polygon {
points: vec![
Pt2D::new(0.0, 0.0),
Pt2D::new(width, 0.0),
Pt2D::new(width, height),
Pt2D::new(0.0, height),
Pt2D::new(0.0, 0.0),
],
indices: vec![0, 1, 2, 0, 2, 3],
rings: None,
}
}
pub fn rectangle_centered(center: Pt2D, width: Distance, height: Distance) -> Polygon {
Polygon::rectangle(width.inner_meters(), height.inner_meters()).translate(
center.x() - width.inner_meters() / 2.0,
center.y() - height.inner_meters() / 2.0,
)
}
pub fn rectangle_two_corners(pt1: Pt2D, pt2: Pt2D) -> Option<Polygon> {
if Pt2D::new(pt1.x(), 0.0) == Pt2D::new(pt2.x(), 0.0)
|| Pt2D::new(0.0, pt1.y()) == Pt2D::new(0.0, pt2.y())
{
return None;
}
let (x1, width) = if pt1.x() < pt2.x() {
(pt1.x(), pt2.x() - pt1.x())
} else {
(pt2.x(), pt1.x() - pt2.x())
};
let (y1, height) = if pt1.y() < pt2.y() {
(pt1.y(), pt2.y() - pt1.y())
} else {
(pt2.y(), pt1.y() - pt2.y())
};
Some(Polygon::rectangle(width, height).translate(x1, y1))
}
pub fn rounded_rectangle(w: f64, h: f64, r: Option<f64>) -> Polygon {
let r = r.unwrap_or_else(|| w.min(h) / 2.0);
assert!(2.0 * r <= w);
assert!(2.0 * r <= h);
let mut pts = vec![];
const RESOLUTION: usize = 5;
let mut arc = |center: Pt2D, angle1_degs: f64, angle2_degs: f64| {
for i in 0..=RESOLUTION {
let angle = Angle::new_degs(
angle1_degs + (angle2_degs - angle1_degs) * ((i as f64) / (RESOLUTION as f64)),
);
pts.push(center.project_away(Distance::meters(r), angle.invert_y()));
}
};
arc(Pt2D::new(r, r), 180.0, 90.0);
arc(Pt2D::new(w - r, r), 90.0, 0.0);
arc(Pt2D::new(w - r, h - r), 360.0, 270.0);
arc(Pt2D::new(r, h - r), 270.0, 180.0);
pts.push(Pt2D::new(0.0, r));
pts.dedup();
Ring::must_new(pts).to_polygon()
}
pub fn union(self, other: Polygon) -> Polygon {
let mut points = self.points;
let mut indices = self.indices;
let offset = points.len() as u16;
points.extend(other.points);
for idx in other.indices {
indices.push(offset + idx);
}
Polygon {
points,
indices,
rings: None,
}
}
pub fn union_all(mut list: Vec<Polygon>) -> Polygon {
let mut result = list.pop().unwrap();
for p in list {
result = result.union(p);
}
result
}
pub fn intersection(&self, other: &Polygon) -> Vec<Polygon> {
from_multi(to_geo(self.points()).intersection(&to_geo(other.points())))
}
pub fn convex_hull(list: Vec<Polygon>) -> Polygon {
let mp: geo::MultiPolygon<f64> = list.into_iter().map(|p| to_geo(p.points())).collect();
from_geo(mp.convex_hull())
}
pub fn polylabel(&self) -> Pt2D {
let pt = polylabel::polylabel(&to_geo(&self.points()), &1.0).unwrap();
Pt2D::new(pt.x(), pt.y())
}
pub fn to_outline(&self, thickness: Distance) -> Result<Polygon, String> {
if let Some(ref rings) = self.rings {
Ok(Polygon::union_all(
rings.iter().map(|r| r.to_outline(thickness)).collect(),
))
} else {
Ring::new(self.points.clone()).map(|r| r.to_outline(thickness))
}
}
pub fn strip_rings(&self) -> Polygon {
let mut p = self.clone();
p.rings = None;
p
}
pub fn area(&self) -> f64 {
to_geo(&self.points()).area().abs()
}
pub fn clip_polyline(&self, input: &PolyLine) -> Option<Vec<Pt2D>> {
let ring = Ring::must_new(self.points.clone());
let hits = ring.all_intersections(input);
if hits.len() == 0 {
if self.contains_pt(input.first_pt()) {
Some(input.points().clone())
} else {
None
}
} else if hits.len() == 1 {
if self.contains_pt(input.first_pt()) {
input
.get_slice_ending_at(hits[0])
.map(|pl| pl.into_points())
} else {
input
.get_slice_starting_at(hits[0])
.map(|pl| pl.into_points())
}
} else if hits.len() == 2 {
Some(input.trim_to_endpts(hits[0], hits[1]).into_points())
} else {
None
}
}
pub fn clip_ring(&self, input: &Ring) -> Option<Vec<Pt2D>> {
let ring = Ring::must_new(self.points.clone());
let hits = ring.all_intersections(&PolyLine::unchecked_new(input.clone().into_points()));
if hits.len() == 0 {
if self.contains_pt(input.points()[0]) {
return Some(input.points().clone());
}
} else if hits.len() == 2 {
let (pl1, pl2) = input.get_both_slices_btwn(hits[0], hits[1])?;
if pl1
.points()
.iter()
.all(|pt| self.contains_pt(*pt) || ring.contains_pt(*pt))
{
return Some(pl1.into_points());
}
if pl2
.points()
.iter()
.all(|pt| self.contains_pt(*pt) || ring.contains_pt(*pt))
{
return Some(pl2.into_points());
}
}
None
}
}
impl fmt::Display for Polygon {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(
f,
"Polygon with {} points and {} indices",
self.points.len(),
self.indices.len()
)?;
for (idx, pt) in self.points.iter().enumerate() {
writeln!(f, " {}: {}", idx, pt)?;
}
write!(f, "Indices: [")?;
for slice in self.indices.chunks_exact(3) {
write!(f, "({}, {}, {}), ", slice[0], slice[1], slice[2])?;
}
writeln!(f, "]")
}
}
#[derive(Clone, Debug)]
pub struct Triangle {
pub pt1: Pt2D,
pub pt2: Pt2D,
pub pt3: Pt2D,
}
impl Triangle {
pub(crate) fn new(pt1: Pt2D, pt2: Pt2D, pt3: Pt2D) -> Triangle {
Triangle { pt1, pt2, pt3 }
}
fn contains_pt(&self, pt: Pt2D) -> bool {
let x1 = self.pt1.x();
let y1 = self.pt1.y();
let x2 = self.pt2.x();
let y2 = self.pt2.y();
let x3 = self.pt3.x();
let y3 = self.pt3.y();
let px = pt.x();
let py = pt.y();
let epsilon = 0.000_000_1;
let l0 = ((y2 - y3) * (px - x3) + (x3 - x2) * (py - y3))
/ (((y2 - y3) * (x1 - x3) + (x3 - x2) * (y1 - y3)) + epsilon);
let l1 = ((y3 - y1) * (px - x3) + (x1 - x3) * (py - y3))
/ (((y2 - y3) * (x1 - x3) + (x3 - x2) * (y1 - y3)) + epsilon);
let l2 = 1.0 - l0 - l1;
for x in &[l0, l1, l2] {
if *x >= 1.0 || *x <= 0.0 {
return false;
}
}
true
}
}
fn to_geo(pts: &Vec<Pt2D>) -> geo::Polygon<f64> {
geo::Polygon::new(
geo::LineString::from(
pts.iter()
.map(|pt| geo::Point::new(pt.x(), pt.y()))
.collect::<Vec<_>>(),
),
Vec::new(),
)
}
fn from_geo(p: geo::Polygon<f64>) -> Polygon {
Polygon::buggy_new(
p.into_inner()
.0
.into_points()
.into_iter()
.map(|pt| Pt2D::new(pt.x(), pt.y()))
.collect(),
)
}
fn from_multi(multi: geo::MultiPolygon<f64>) -> Vec<Polygon> {
multi.into_iter().map(from_geo).collect()
}
fn downsize(input: Vec<usize>) -> Vec<u16> {
let mut output = Vec::new();
for x in input {
if let Ok(x) = u16::try_from(x) {
output.push(x);
} else {
panic!("{} can't fit in u16, some polygon is too huge", x);
}
}
output
}