1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
// Manages conflicts at intersections. When an agent has reached the end of a lane, they call
// maybe_start_turn to make a Request. Based on the intersection type (stop sign, traffic signal,
// or a "freeform policy"), the Request gets queued or immediately accepted. When agents finish
// turns or when some time passes (for traffic signals), the intersection also gets a chance to
// react, maybe granting one of the pending requests.
//
// Most of the complexity comes from attempting to workaround
// https://dabreegster.github.io/abstreet/trafficsim/gridlock.html.

use std::collections::{BTreeMap, BTreeSet, HashSet};

use serde::{Deserialize, Serialize};

use abstutil::{deserialize_btreemap, retain_btreeset, serialize_btreemap};
use geom::{Duration, Time};
use map_model::{
    ControlStopSign, ControlTrafficSignal, IntersectionID, LaneID, Map, PhaseType, Traversable,
    TurnID, TurnPriority, TurnType,
};

use crate::mechanics::car::Car;
use crate::mechanics::Queue;
use crate::{AgentID, AlertLocation, CarID, Command, Event, Scheduler, Speed};

const WAIT_AT_STOP_SIGN: Duration = Duration::const_seconds(0.5);
const WAIT_BEFORE_YIELD_AT_TRAFFIC_SIGNAL: Duration = Duration::const_seconds(0.2);

#[derive(Serialize, Deserialize, Clone)]
pub struct IntersectionSimState {
    state: BTreeMap<IntersectionID, State>,
    use_freeform_policy_everywhere: bool,
    dont_block_the_box: bool,
    break_turn_conflict_cycles: bool,
    handle_uber_turns: bool,
    // (x, y) means x is blocked by y. It's a many-to-many relationship. TODO Better data
    // structure.
    blocked_by: BTreeSet<(CarID, CarID)>,
    events: Vec<Event>,
}

#[derive(Clone, Serialize, Deserialize)]
struct State {
    id: IntersectionID,
    accepted: BTreeSet<Request>,
    // Track when a request is first made.
    #[serde(
        serialize_with = "serialize_btreemap",
        deserialize_with = "deserialize_btreemap"
    )]
    waiting: BTreeMap<Request, Time>,
    // When a vehicle begins an uber-turn, reserve the future turns to ensure they're able to
    // complete the entire sequence. This is especially necessary since groups of traffic signals
    // are not yet configured as one.
    reserved: BTreeSet<Request>,

    signal: Option<SignalState>,
}

#[derive(Clone, Serialize, Deserialize)]
struct SignalState {
    current_stage: usize,
    stage_ends_at: Time,
}

#[derive(PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize, Clone, Debug)]
struct Request {
    agent: AgentID,
    turn: TurnID,
}

impl IntersectionSimState {
    pub fn new(
        map: &Map,
        scheduler: &mut Scheduler,
        use_freeform_policy_everywhere: bool,
        dont_block_the_box: bool,
        break_turn_conflict_cycles: bool,
        handle_uber_turns: bool,
    ) -> IntersectionSimState {
        let mut sim = IntersectionSimState {
            state: BTreeMap::new(),
            use_freeform_policy_everywhere,
            dont_block_the_box,
            break_turn_conflict_cycles,
            handle_uber_turns,
            blocked_by: BTreeSet::new(),
            events: Vec::new(),
        };
        for i in map.all_intersections() {
            let mut state = State {
                id: i.id,
                accepted: BTreeSet::new(),
                waiting: BTreeMap::new(),
                reserved: BTreeSet::new(),
                signal: None,
            };
            if i.is_traffic_signal() && !use_freeform_policy_everywhere {
                state.signal = Some(SignalState::new(i.id, Time::START_OF_DAY, map, scheduler));
            }
            sim.state.insert(i.id, state);
        }
        sim
    }

    pub fn nobody_headed_towards(&self, lane: LaneID, i: IntersectionID) -> bool {
        let state = &self.state[&i];
        !state
            .accepted
            .iter()
            .chain(state.reserved.iter())
            .any(|req| req.turn.dst == lane)
    }

    pub fn turn_finished(
        &mut self,
        now: Time,
        agent: AgentID,
        turn: TurnID,
        scheduler: &mut Scheduler,
        map: &Map,
    ) {
        let state = self.state.get_mut(&turn.parent).unwrap();
        assert!(state.accepted.remove(&Request { agent, turn }));
        state.reserved.remove(&Request { agent, turn });
        if map.get_t(turn).turn_type != TurnType::SharedSidewalkCorner {
            self.wakeup_waiting(now, turn.parent, scheduler, map);
        }
        if self.break_turn_conflict_cycles {
            if let AgentID::Car(car) = agent {
                retain_btreeset(&mut self.blocked_by, |(_, c)| *c != car);
            }
        }
    }

    // For deleting cars
    pub fn cancel_request(&mut self, agent: AgentID, turn: TurnID) {
        let state = self.state.get_mut(&turn.parent).unwrap();
        state.waiting.remove(&Request { agent, turn });
        if self.break_turn_conflict_cycles {
            if let AgentID::Car(car) = agent {
                retain_btreeset(&mut self.blocked_by, |(c1, c2)| *c1 != car && *c2 != car);
            }
        }
    }

    pub fn space_freed(
        &mut self,
        now: Time,
        i: IntersectionID,
        scheduler: &mut Scheduler,
        map: &Map,
    ) {
        self.wakeup_waiting(now, i, scheduler, map);
    }

    // Vanished at border, stopped biking, etc -- a vehicle disappeared, and didn't have one last
    // turn.
    pub fn vehicle_gone(&mut self, car: CarID) {
        retain_btreeset(&mut self.blocked_by, |(c1, c2)| *c1 != car && *c2 != car);
    }

    fn wakeup_waiting(&self, now: Time, i: IntersectionID, scheduler: &mut Scheduler, map: &Map) {
        /*if i == IntersectionID(64) {
            println!("at {}: wakeup_waiting -----------------", now);
        }*/
        let mut all: Vec<(Request, Time)> = self.state[&i]
            .waiting
            .iter()
            .map(|(r, t)| (r.clone(), *t))
            .collect();
        // Sort by waiting time, so things like stop signs actually are first-come, first-served.
        all.sort_by_key(|(_, t)| *t);

        // Wake up Priority turns before Yield turns. Don't wake up Banned turns at all. This makes
        // sure priority vehicles should get the head-start, without blocking yield vehicles
        // unnecessarily.
        let mut protected = Vec::new();
        let mut yielding = Vec::new();

        if self.use_freeform_policy_everywhere {
            for (req, _) in all {
                protected.push(req);
            }
        } else if let Some(ref signal) = map.maybe_get_traffic_signal(i) {
            let stage = &signal.stages[self.state[&i].signal.as_ref().unwrap().current_stage];
            for (req, _) in all {
                match stage.get_priority_of_turn(req.turn, signal) {
                    TurnPriority::Protected => {
                        protected.push(req);
                    }
                    TurnPriority::Yield => {
                        yielding.push(req);
                    }
                    // No need to wake up
                    TurnPriority::Banned => {}
                }
            }
        } else if let Some(ref sign) = map.maybe_get_stop_sign(i) {
            for (req, _) in all {
                // Banned is impossible
                if sign.get_priority(req.turn, map) == TurnPriority::Protected {
                    protected.push(req);
                } else {
                    yielding.push(req);
                }
            }
        } else {
            // This could either be a border intersection or an intersection that was just closed
            // in the middle of simulation. In either case, there shouldn't be any other turns at
            // it.
            assert!(protected.is_empty());
            assert!(yielding.is_empty());
        };

        for req in protected {
            // Use update because multiple agents could finish a turn at the same time, before the
            // waiting one has a chance to try again.
            scheduler.update(now, Command::update_agent(req.agent));
        }
        // Make sure the protected movement gets first dibs. The scheduler arbitrarily (but
        // deterministically) orders commands with the same time.
        for req in yielding {
            scheduler.update(
                now + Duration::seconds(0.1),
                Command::update_agent(req.agent),
            );
        }
    }

    // This is only triggered for traffic signals.
    pub fn update_intersection(
        &mut self,
        now: Time,
        id: IntersectionID,
        map: &Map,
        scheduler: &mut Scheduler,
    ) {
        let state = self.state.get_mut(&id).unwrap();
        let signal_state = state.signal.as_mut().unwrap();
        let signal = map.get_traffic_signal(id);

        // Switch to a new stage?
        assert_eq!(now, signal_state.stage_ends_at);
        let old_stage = &signal.stages[signal_state.current_stage];
        match old_stage.phase_type {
            PhaseType::Fixed(_) => {
                signal_state.current_stage += 1;
            }
            PhaseType::Adaptive(_) => {
                // TODO Make a better policy here. For now, if there's _anyone_ waiting to start a
                // protected turn, repeat this stage for the full duration. Note that "waiting" is
                // only defined as "at the end of the lane, ready to start the turn." If a
                // vehicle/ped is a second away from the intersection, this won't detect that. We
                // could pass in all of the Queues here and use that to count all incoming agents,
                // even ones a little farther away.
                if state.waiting.keys().all(|req| {
                    old_stage.get_priority_of_turn(req.turn, signal) != TurnPriority::Protected
                }) {
                    signal_state.current_stage += 1;
                    self.events.push(Event::Alert(
                        AlertLocation::Intersection(id),
                        "Repeating an adaptive stage".to_string(),
                    ));
                }
            }
        }
        if signal_state.current_stage == signal.stages.len() {
            signal_state.current_stage = 0;
        }

        signal_state.stage_ends_at = now
            + signal.stages[signal_state.current_stage]
                .phase_type
                .simple_duration();
        scheduler.push(signal_state.stage_ends_at, Command::UpdateIntersection(id));
        self.wakeup_waiting(now, id, scheduler, map);
    }

    // For cars: The head car calls this when they're at the end of the lane WaitingToAdvance. If
    // this returns true, then the head car MUST actually start this turn.
    // For peds: Likewise -- only called when the ped is at the start of the turn. They must
    // actually do the turn if this returns true.
    //
    // If this returns false, the agent should NOT retry. IntersectionSimState will schedule a
    // retry event at some point.
    pub fn maybe_start_turn(
        &mut self,
        agent: AgentID,
        turn: TurnID,
        speed: Speed,
        now: Time,
        map: &Map,
        scheduler: &mut Scheduler,
        maybe_cars_and_queues: Option<(
            &Car,
            &BTreeMap<CarID, Car>,
            &mut BTreeMap<Traversable, Queue>,
        )>,
    ) -> bool {
        let req = Request { agent, turn };
        self.state
            .get_mut(&turn.parent)
            .unwrap()
            .waiting
            .entry(req.clone())
            .or_insert(now);

        let shared_sidewalk_corner =
            map.get_t(req.turn).turn_type == TurnType::SharedSidewalkCorner;

        let readonly_pair = maybe_cars_and_queues.as_ref().map(|(_, c, q)| (*c, &**q));
        let allowed = if shared_sidewalk_corner {
            // SharedSidewalkCorner doesn't conflict with anything -- fastpath!
            true
        } else if !self.handle_accepted_conflicts(&req, map, readonly_pair) {
            // It's never OK to perform a conflicting turn
            false
        } else if maybe_cars_and_queues
            .as_ref()
            .map(|(car, _, _)| {
                self.handle_uber_turns && car.router.get_path().currently_inside_ut().is_some()
            })
            .unwrap_or(false)
        {
            // If we started an uber-turn, then finish it! But alert if we're running a red light.
            if let Some(ref signal) = map.maybe_get_traffic_signal(turn.parent) {
                // Don't pass in the scheduler, aka, don't pause before yielding.
                if !self.traffic_signal_policy(&req, map, signal, speed, now, None) && false {
                    self.events.push(Event::Alert(
                        AlertLocation::Intersection(req.turn.parent),
                        format!("Running a red light inside an uber-turn: {:?}", req),
                    ));
                }
            }

            true
        } else if self.use_freeform_policy_everywhere {
            // If we made it this far, we don't conflict with an accepted turn
            true
        } else if let Some(ref signal) = map.maybe_get_traffic_signal(turn.parent) {
            self.traffic_signal_policy(&req, map, signal, speed, now, Some(scheduler))
        } else if let Some(ref sign) = map.maybe_get_stop_sign(turn.parent) {
            self.stop_sign_policy(&req, map, sign, now, scheduler)
        } else {
            unreachable!()
        };
        if !allowed {
            return false;
        }

        // Lock the entire uber-turn.
        if self.handle_uber_turns {
            if let Some(ut) = maybe_cars_and_queues
                .as_ref()
                .and_then(|(car, _, _)| car.router.get_path().about_to_start_ut())
            {
                // If there's a problem up ahead, don't start.
                for t in &ut.path {
                    let req = Request { agent, turn: *t };
                    if !self.handle_accepted_conflicts(&req, map, readonly_pair) {
                        return false;
                    }
                }
                // If the way is clear, make sure it stays that way.
                for t in &ut.path {
                    self.state
                        .get_mut(&t.parent)
                        .unwrap()
                        .reserved
                        .insert(Request { agent, turn: *t });
                }
            }
        }

        // Don't block the box.
        if let Some((car, _, queues)) = maybe_cars_and_queues {
            assert_eq!(agent, AgentID::Car(car.vehicle.id));
            let inside_ut = self.handle_uber_turns
                && (car.router.get_path().currently_inside_ut().is_some()
                    || car.router.get_path().about_to_start_ut().is_some());
            let queue = queues.get_mut(&Traversable::Lane(turn.dst)).unwrap();
            if !queue.try_to_reserve_entry(
                car,
                !self.dont_block_the_box
                    || allow_block_the_box(map.get_i(turn.parent).orig_id.0)
                    || inside_ut,
            ) {
                if self.break_turn_conflict_cycles {
                    // TODO Should we run the detector here?
                    if let Some(c) = queue.laggy_head {
                        self.blocked_by.insert((car.vehicle.id, c));
                    } else if let Some(c) = queue.cars.get(0) {
                        self.blocked_by.insert((car.vehicle.id, *c));
                    } else {
                        // Nobody's in the target lane, but there's somebody already in the
                        // intersection headed there, taking up all of the space.
                        // I guess we shouldn't count reservations for uber-turns here, because
                        // we're not going to do block-the-box resolution in the interior at
                        // all?
                        self.blocked_by.insert((
                            car.vehicle.id,
                            self.state[&turn.parent]
                                .accepted
                                .iter()
                                .find(|r| r.turn.dst == turn.dst)
                                .unwrap()
                                .agent
                                .as_car(),
                        ));
                    }
                }

                return false;
            }
        }

        // TODO For now, we're only interested in signals, and there's too much raw data to store
        // for stop signs too.
        let state = self.state.get_mut(&turn.parent).unwrap();
        let delay = now - state.waiting.remove(&req).unwrap();
        // SharedSidewalkCorner are always no-conflict, immediate turns; they're not interesting.
        if !shared_sidewalk_corner {
            if let Some(ts) = map.maybe_get_traffic_signal(state.id) {
                self.events.push(Event::IntersectionDelayMeasured(
                    ts.compressed_id(turn),
                    delay,
                    agent,
                ));
            }
        }
        state.accepted.insert(req);
        if self.break_turn_conflict_cycles {
            if let AgentID::Car(car) = agent {
                retain_btreeset(&mut self.blocked_by, |(c, _)| *c != car);
            }
        }

        true
    }

    pub fn debug(&self, id: IntersectionID, map: &Map) {
        println!("{}", abstutil::to_json(&self.state[&id]));
        if let Some(ref sign) = map.maybe_get_stop_sign(id) {
            println!("{}", abstutil::to_json(sign));
        } else if let Some(ref signal) = map.maybe_get_traffic_signal(id) {
            println!("{}", abstutil::to_json(signal));
        } else {
            println!("Border");
        }
    }

    pub fn get_accepted_agents(&self, id: IntersectionID) -> Vec<(AgentID, TurnID)> {
        self.state[&id]
            .accepted
            .iter()
            .map(|req| (req.agent, req.turn))
            .collect()
    }

    pub fn get_waiting_agents(&self, id: IntersectionID) -> Vec<(AgentID, TurnID, Time)> {
        self.state[&id]
            .waiting
            .iter()
            .map(|(req, time)| (req.agent, req.turn, *time))
            .collect()
    }

    pub fn get_blocked_by(&self, a: AgentID) -> HashSet<AgentID> {
        let mut blocked_by = HashSet::new();
        if let AgentID::Car(c) = a {
            for (c1, c2) in &self.blocked_by {
                if *c1 == c {
                    blocked_by.insert(AgentID::Car(*c2));
                }
            }
        }
        blocked_by
    }

    pub fn collect_events(&mut self) -> Vec<Event> {
        std::mem::replace(&mut self.events, Vec::new())
    }

    /// returns intersections with travelers waiting for at least `threshold` since `now`, ordered
    /// so the longest delayed intersection is first.
    pub fn delayed_intersections(
        &self,
        now: Time,
        threshold: Duration,
    ) -> Vec<(IntersectionID, Time)> {
        let mut candidates = Vec::new();
        for state in self.state.values() {
            if let Some(earliest) = state.waiting.values().min() {
                if now - *earliest >= threshold {
                    candidates.push((state.id, *earliest));
                }
            }
        }
        candidates.sort_by_key(|(_, t)| *t);
        candidates
    }

    pub fn current_stage_and_remaining_time(
        &self,
        now: Time,
        i: IntersectionID,
    ) -> (usize, Duration) {
        let state = &self.state[&i].signal.as_ref().unwrap();
        if now > state.stage_ends_at {
            panic!(
                "At {}, but {} should have advanced its stage at {}",
                now, i, state.stage_ends_at
            );
        }
        (state.current_stage, state.stage_ends_at - now)
    }

    pub fn handle_live_edited_traffic_signals(
        &mut self,
        now: Time,
        map: &Map,
        scheduler: &mut Scheduler,
    ) {
        for state in self.state.values_mut() {
            match (
                map.maybe_get_traffic_signal(state.id),
                state.signal.as_mut(),
            ) {
                (Some(ts), Some(signal_state)) => {
                    if signal_state.current_stage >= ts.stages.len() {
                        // Just jump back to the first one. Shrug.
                        signal_state.current_stage = 0;
                        println!(
                            "WARNING: Traffic signal {} was live-edited in the middle of a stage, \
                             so jumping back to the first stage",
                            state.id
                        );
                    }
                }
                (Some(_), None) => {
                    state.signal = Some(SignalState::new(state.id, now, map, scheduler));
                }
                (None, Some(_)) => {
                    state.signal = None;
                    scheduler.cancel(Command::UpdateIntersection(state.id));
                }
                (None, None) => {}
            }
        }
    }
}

impl IntersectionSimState {
    fn stop_sign_policy(
        &mut self,
        req: &Request,
        map: &Map,
        sign: &ControlStopSign,
        now: Time,
        scheduler: &mut Scheduler,
    ) -> bool {
        let our_priority = sign.get_priority(req.turn, map);
        assert!(our_priority != TurnPriority::Banned);
        let our_time = self.state[&req.turn.parent].waiting[req];

        if our_priority == TurnPriority::Yield && now < our_time + WAIT_AT_STOP_SIGN {
            // Since we have "ownership" of scheduling for req.agent, don't need to use
            // scheduler.update.
            scheduler.push(
                our_time + WAIT_AT_STOP_SIGN,
                Command::update_agent(req.agent),
            );
            return false;
        }

        // Once upon a time, we'd make sure that this request doesn't conflict with another in
        // self.waiting:
        // 1) Higher-ranking turns get to go first.
        // 2) Equal-ranking turns that started waiting before us get to go first.
        // But the exceptions started stacking -- if the other agent is blocked or the turns don't
        // even conflict, then allow it. Except determining if the other agent is blocked or not is
        // tough and kind of recursive.
        //
        // So instead, don't do any of that! The WAIT_AT_STOP_SIGN scheduling above and the fact
        // that events are processed in time order mean that case #2 is magically handled anyway.
        // If a case #1 could've started by now, then they would have. Since they didn't, they must
        // be blocked.

        // TODO Make sure we can optimistically finish this turn before an approaching
        // higher-priority vehicle wants to begin.

        true
    }

    fn traffic_signal_policy(
        &mut self,
        req: &Request,
        map: &Map,
        signal: &ControlTrafficSignal,
        speed: Speed,
        now: Time,
        scheduler: Option<&mut Scheduler>,
    ) -> bool {
        let turn = map.get_t(req.turn);

        let state = &self.state[&req.turn.parent];
        let signal_state = state.signal.as_ref().unwrap();
        let stage = &signal.stages[signal_state.current_stage];
        let full_stage_duration = stage.phase_type.simple_duration();
        let remaining_stage_time = signal_state.stage_ends_at - now;
        let our_time = state.waiting[req];

        // Can't go at all this stage.
        let our_priority = stage.get_priority_of_turn(req.turn, signal);
        if our_priority == TurnPriority::Banned {
            return false;
        }

        if our_priority == TurnPriority::Yield
            && now < our_time + WAIT_BEFORE_YIELD_AT_TRAFFIC_SIGNAL
        {
            // Since we have "ownership" of scheduling for req.agent, don't need to use
            // scheduler.update.
            if let Some(s) = scheduler {
                s.push(
                    our_time + WAIT_BEFORE_YIELD_AT_TRAFFIC_SIGNAL,
                    Command::update_agent(req.agent),
                );
            }
            return false;
        }

        // Previously: A yield loses to a conflicting Priority turn.
        // But similar to the description in stop_sign_policy, this caused unnecessary gridlock.
        // Priority vehicles getting scheduled first just requires a little tweak in
        // update_intersection.

        // TODO Make sure we can optimistically finish this turn before an approaching
        // higher-priority vehicle wants to begin.

        // Optimistically if nobody else is in the way, this is how long it'll take to finish the
        // turn. Don't start the turn if we won't finish by the time the light changes. If we get
        // it wrong, that's fine -- block the box a bit.
        let time_to_cross = turn.geom.length() / speed;
        if time_to_cross > remaining_stage_time {
            // Actually, we might have bigger problems...
            if time_to_cross > full_stage_duration {
                self.events.push(Event::Alert(
                    AlertLocation::Intersection(req.turn.parent),
                    format!(
                        "{:?} is impossible to fit into stage duration of {}",
                        req, full_stage_duration
                    ),
                ));
            } else {
                return false;
            }
        }

        true
    }

    // If true, the request can go.
    fn handle_accepted_conflicts(
        &mut self,
        req: &Request,
        map: &Map,
        maybe_cars_and_queues: Option<(&BTreeMap<CarID, Car>, &BTreeMap<Traversable, Queue>)>,
    ) -> bool {
        let turn = map.get_t(req.turn);
        let mut cycle_detected = false;
        let mut ok = true;
        for other in &self.state[&req.turn.parent].accepted {
            // Never short-circuit; always record all of the dependencies; it might help someone
            // else unstick things.
            if map.get_t(other.turn).conflicts_with(turn) {
                if self.break_turn_conflict_cycles {
                    if let AgentID::Car(c) = req.agent {
                        if let AgentID::Car(c2) = other.agent {
                            self.blocked_by.insert((c, c2));
                        }
                        if !cycle_detected {
                            if let Some(cycle) =
                                self.detect_conflict_cycle(c, maybe_cars_and_queues.unwrap())
                            {
                                // Allow the conflicting turn!
                                self.events.push(Event::Alert(
                                    AlertLocation::Intersection(req.turn.parent),
                                    format!("Turn conflict cycle involving {:?}", cycle),
                                ));
                                cycle_detected = true;
                            }
                        }
                    }
                }

                if !cycle_detected {
                    ok = false;
                }

                // It's never safe for two vehicles to go for the same lane.
                if turn.id.dst == other.turn.dst {
                    return false;
                }
            }
        }
        if !ok {
            return false;
        }
        for other in &self.state[&req.turn.parent].reserved {
            if map.get_t(other.turn).conflicts_with(turn) {
                return false;
            }
        }
        true
    }

    fn detect_conflict_cycle(
        &self,
        car: CarID,
        pair: (&BTreeMap<CarID, Car>, &BTreeMap<Traversable, Queue>),
    ) -> Option<HashSet<CarID>> {
        let (cars, queues) = pair;

        let mut queue = vec![car];
        let mut seen = HashSet::new();
        while !queue.is_empty() {
            let current = queue.pop().unwrap();
            // Might not actually be a cycle. Insist on seeing the original req.agent
            // again.
            if !seen.is_empty() && current == car {
                return Some(seen);
            }
            if !seen.contains(&current) {
                seen.insert(current);

                for (c1, c2) in &self.blocked_by {
                    if *c1 == current {
                        queue.push(*c2);
                    }
                }

                // If this car isn't the head of its queue, add that dependency. (Except for
                // the original car, which we already know is the head of its queue)
                // TODO Maybe store this in blocked_by?
                if current != car {
                    let q = &queues[&cars[&current].router.head()];
                    let head = if let Some(c) = q.laggy_head {
                        c
                    } else {
                        *q.cars.get(0).unwrap()
                    };
                    if current != head {
                        queue.push(head);
                    }
                }
            }
        }
        None
    }
}

impl SignalState {
    fn new(id: IntersectionID, now: Time, map: &Map, scheduler: &mut Scheduler) -> SignalState {
        let mut state = SignalState {
            current_stage: 0,
            stage_ends_at: now,
        };

        let signal = map.get_traffic_signal(id);
        // What stage are we starting with?
        let mut offset = (now - Time::START_OF_DAY) + signal.offset;
        loop {
            let dt = signal.stages[state.current_stage]
                .phase_type
                .simple_duration();
            if offset >= dt {
                offset -= dt;
                state.current_stage += 1;
                if state.current_stage == signal.stages.len() {
                    state.current_stage = 0;
                }
            } else {
                state.stage_ends_at = now + dt - offset;
                break;
            }
        }
        scheduler.push(state.stage_ends_at, Command::UpdateIntersection(id));
        state
    }
}

// TODO Sometimes a traffic signal is surrounded by tiny lanes with almost no capacity. Workaround
// for now.
fn allow_block_the_box(osm_node_id: i64) -> bool {
    // 23rd and Madison, Madison and John, Boren and 12th, Boren and Yesler, Lake Wash and Madison
    osm_node_id == 53211693
        || osm_node_id == 53214134
        || osm_node_id == 53214133
        || osm_node_id == 53165712
        || osm_node_id == 281487826
        || osm_node_id == 53209840
        || osm_node_id == 4249361353
        || osm_node_id == 987334546
        || osm_node_id == 848817336
}