1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet, VecDeque};

use serde::{Deserialize, Serialize};

use abstutil::{deserialize_hashmap, serialize_hashmap, FixedMap, IndexableKey};
use geom::{Distance, Duration, PolyLine, Time};
use map_model::{DrivingSide, IntersectionID, LaneID, Map, Path, PathStep, Position, Traversable};

use crate::mechanics::car::{Car, CarState};
use crate::mechanics::queue::{Queue, QueueEntry, Queued};
use crate::sim::Ctx;
use crate::{
    ActionAtEnd, AgentID, AgentProperties, CarID, CarStatus, Command, CreateCar, DelayCause,
    DistanceInterval, DrawCarInput, Event, IntersectionSimState, ParkedCar, ParkingSim,
    ParkingSpot, PersonID, Problem, SimOptions, TimeInterval, TransitSimState, TripID, TripManager,
    UnzoomedAgent, Vehicle, VehicleType, WalkingSimState, FOLLOWING_DISTANCE, MAX_CAR_LENGTH,
};

const TIME_TO_WAIT_AT_BUS_STOP: Duration = Duration::const_seconds(10.0);
const TIME_TO_CHANGE_LANES: Duration = Duration::const_seconds(1.0);

// TODO Do something else.
pub const BLIND_RETRY_TO_CREEP_FORWARDS: Duration = Duration::const_seconds(0.1);
pub const BLIND_RETRY_TO_REACH_END_DIST: Duration = Duration::const_seconds(5.0);

/// Simulates vehicles!
#[derive(Serialize, Deserialize, Clone)]
pub(crate) struct DrivingSimState {
    // This spends some space to save time. If a simulation contains 1 million cars over the course
    // of a day, but only 100,000 are ever active simultaneously, we store 900,000 `None`s. But we
    // gain much faster lookup, which has shown dramatic speedups in the scenarios being run so
    // far.
    cars: FixedMap<CarID, Car>,
    // Note this uses a HashMap for faster lookup. Although the order of iterating over the HashMap
    // is random, determinism in the simulation is preserved, because nothing iterates over
    // everything.
    #[serde(
        serialize_with = "serialize_hashmap",
        deserialize_with = "deserialize_hashmap"
    )]
    queues: HashMap<Traversable, Queue>,
    events: Vec<Event>,

    waiting_to_spawn: BTreeMap<CarID, (Position, Option<PersonID>)>,

    recalc_lanechanging: bool,
    handle_uber_turns: bool,

    time_to_unpark_onstreet: Duration,
    time_to_park_onstreet: Duration,
    time_to_unpark_offstreet: Duration,
    time_to_park_offstreet: Duration,
}

// Mutations
impl DrivingSimState {
    pub fn new(map: &Map, opts: &SimOptions) -> DrivingSimState {
        let mut sim = DrivingSimState {
            cars: FixedMap::new(),
            queues: HashMap::new(),
            events: Vec::new(),
            recalc_lanechanging: !opts.dont_recalc_lanechanging,
            handle_uber_turns: !opts.dont_handle_uber_turns,
            waiting_to_spawn: BTreeMap::new(),

            time_to_unpark_onstreet: Duration::seconds(10.0),
            time_to_park_onstreet: Duration::seconds(15.0),
            time_to_unpark_offstreet: Duration::seconds(5.0),
            time_to_park_offstreet: Duration::seconds(5.0),
        };
        if opts.infinite_parking {
            sim.time_to_unpark_offstreet = Duration::seconds(0.1);
            sim.time_to_park_offstreet = Duration::seconds(0.1);
        }

        for l in map.all_lanes() {
            if l.lane_type.is_for_moving_vehicles() {
                let q = Queue::new(Traversable::Lane(l.id), map);
                sim.queues.insert(q.id, q);
            }
        }
        for t in map.all_turns() {
            if !t.between_sidewalks() {
                let q = Queue::new(Traversable::Turn(t.id), map);
                sim.queues.insert(q.id, q);
            }
        }

        sim
    }

    /// None if it worked, otherwise returns the CreateCar unmodified for possible retry.
    pub fn start_car_on_lane(
        &mut self,
        now: Time,
        mut params: CreateCar,
        ctx: &mut Ctx,
    ) -> Option<CreateCar> {
        let first_lane = params.router.head().as_lane();
        let mut start_dist = params.router.get_path().get_req().start.dist_along();
        if let Some(ref p) = params.maybe_parked_car {
            // If we're exiting a driveway, make the front of the vehicle wind up in the correct
            // spot after the driveway. We could attempt to do this when we create the PathRequest,
            // but it's complicated to adjust the position correctly, and this is the only place
            // that needs to know.
            if !matches!(p.spot, ParkingSpot::Onstreet(_, _)) {
                start_dist += params.vehicle.length;
                // TODO Should we also adjust the request?
                if start_dist > ctx.map.get_l(first_lane).length() {
                    error!(
                        "At {}, {} needs to exit a driveway at {} on {}, but they overflow",
                        now, params.vehicle.id, start_dist, first_lane
                    );
                    // Ideally we'd snap driveways to a point such that all equivalent positions
                    // don't overflow, but until then, just have an unrealistic exit!
                    start_dist -= params.vehicle.length;
                }
            }
        }

        // First handle any of the intermediate queues, failing fast. Record the position of the
        // blockage's front and the index in that queue.
        let mut blocked_starts: Vec<(Position, usize)> = Vec::new();
        for lane in params.router.get_path().get_blocked_starts() {
            // This buffer makes sure other vehicles can enter the queue behind a blockage very
            // close to the start of the lane and not spillover.
            let pos = match params
                .router
                .get_path()
                .get_req()
                .start
                .equiv_pos(lane, ctx.map)
                .buffer_dist(MAX_CAR_LENGTH + FOLLOWING_DISTANCE, ctx.map)
            {
                Some(pos) => pos,
                None => {
                    // TODO Loss of some simulation realism. We could also ban this upfront in
                    // leave_from_driveway by requiring a minimum lane length on all intermediate
                    // lanes...
                    // Also this is super spammy
                    if false {
                        warn!("Not inserting a static blockage on {} at {} for {} to spawn, because the lane is too short", lane, now, params.vehicle.id);
                    }
                    continue;
                }
            };
            if !self.queues.contains_key(&Traversable::Lane(lane)) {
                // TODO This is probably a center turn lane, or maybe some kind of exotic center
                // parking. Just skip over it, until we properly model them.
                continue;
            }
            if let Some(idx) = self.queues[&Traversable::Lane(lane)].can_block_from_driveway(
                // This is before adjusting for the length of the vehicle exiting the driveway
                &pos,
                params.vehicle.length,
                now,
                &self.cars,
                &self.queues,
            ) {
                blocked_starts.push((pos, idx));
            } else {
                return Some(params);
            }
            // TODO What's the purpose of nobody_headed_towards again? Do we need to enforce it for
            // intermediate lanes too?
        }

        if !ctx
            .intersections
            .nobody_headed_towards(first_lane, ctx.map.get_l(first_lane).src_i)
        {
            return Some(params);
        }
        if let Some(idx) = self.queues[&Traversable::Lane(first_lane)].get_idx_to_insert_car(
            start_dist,
            params.vehicle.length,
            now,
            &self.cars,
            &self.queues,
        ) {
            let mut car = Car {
                vehicle: params.vehicle,
                router: params.router,
                // Temporary
                state: CarState::Queued {
                    blocked_since: now,
                    want_to_change_lanes: None,
                },
                last_steps: VecDeque::new(),
                started_at: now,
                total_blocked_time: Duration::ZERO,
                trip_and_person: params.trip_and_person,
                wants_to_overtake: BTreeSet::new(),
            };
            let mut start_crossing = false;
            if let Some(p) = params.maybe_parked_car {
                let delay = match p.spot {
                    ParkingSpot::Onstreet(_, _) => self.time_to_unpark_onstreet,
                    ParkingSpot::Offstreet(_, _) | ParkingSpot::Lot(_, _) => {
                        // Even in infinite parking mode, we want to block intermediate lanes for a
                        // few seconds.
                        //
                        // TODO Actually, revisit ~instantaneous unparking in infinite mode. Were
                        // we making gridlock progress somewhere because of this?
                        if blocked_starts.is_empty() {
                            self.time_to_unpark_offstreet
                        } else {
                            Duration::seconds(5.0)
                        }
                    }
                };
                let mut lanes = Vec::new();
                for (pos, idx) in blocked_starts {
                    self.queues
                        .get_mut(&Traversable::Lane(pos.lane()))
                        .unwrap()
                        .add_static_blockage(
                            car.vehicle.id,
                            pos.dist_along(),
                            pos.dist_along() - car.vehicle.length,
                            idx,
                        );
                    lanes.push(pos.lane());
                }

                car.state = CarState::Unparking {
                    front: start_dist,
                    spot: p.spot,
                    time_int: TimeInterval::new(now, now + delay),
                    blocked_starts: lanes,
                };
            } else {
                // Have to do this early
                if car.router.last_step() {
                    match car.router.maybe_handle_end(
                        start_dist,
                        &car.vehicle,
                        ctx.parking,
                        ctx.map,
                        car.trip_and_person,
                        &mut self.events,
                    ) {
                        None | Some(ActionAtEnd::GotoLaneEnd) => {}
                        x => {
                            panic!(
                                "Car with one-step route {:?} had unexpected result from \
                                 maybe_handle_end: {:?}",
                                car.router, x
                            );
                        }
                    }
                    // We might've decided to go park somewhere farther, so get_end_dist no longer
                    // makes sense.
                    if car.router.last_step() && start_dist > car.router.get_end_dist() {
                        println!(
                            "WARNING: {} wants to spawn at {}, which is past their end of {} on a \
                             one-step path {}",
                            car.vehicle.id,
                            start_dist,
                            car.router.get_end_dist(),
                            first_lane
                        );
                        params.router = car.router;
                        params.vehicle = car.vehicle;
                        return Some(params);
                    }
                }

                car.state = car.crossing_state(start_dist, now, ctx.map);
                start_crossing = true;
            }
            ctx.scheduler
                .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
            self.queues
                .get_mut(&Traversable::Lane(first_lane))
                .unwrap()
                .insert_car_at_idx(idx, &car);
            self.waiting_to_spawn.remove(&car.vehicle.id);

            if start_crossing {
                // Don't call this earlier where we set crossing_state, because we're not in the
                // queue yet
                self.new_crossing_state(ctx, &car);
            }

            self.cars.insert(car.vehicle.id, car);

            return None;
        }
        Some(params)
    }

    /// If start_car_on_lane fails and a retry is scheduled, this is an idempotent way to mark the
    /// vehicle as active, but waiting to spawn.
    pub fn vehicle_waiting_to_spawn(&mut self, id: CarID, pos: Position, person: Option<PersonID>) {
        self.waiting_to_spawn.insert(id, (pos, person));
    }

    /// State transitions for this car:
    ///
    /// Crossing -> Queued or WaitingToAdvance
    /// Unparking -> Crossing
    /// IdlingAtStop -> Crossing
    /// Queued -> last step handling (Parking or done)
    /// WaitingToAdvance -> try to advance to the next step of the path
    /// Parking -> done
    ///
    /// State transitions for other cars:
    ///
    /// Crossing -> Crossing (recalculate dist/time)
    /// Queued -> Crossing
    ///
    /// Why is it safe to process cars in any order, rather than making sure to follow the order
    /// of queues? Because of the invariant that distances should never suddenly jump when a car
    /// has entered/exiting a queue.
    /// This car might have reached the router's end distance, but maybe not -- might
    /// actually be stuck behind other cars. We have to calculate the distances right now to
    /// be sure.
    pub fn update_car(
        &mut self,
        id: CarID,
        now: Time,
        ctx: &mut Ctx,
        trips: &mut TripManager,
        transit: &mut TransitSimState,
        walking: &mut WalkingSimState,
    ) {
        let mut need_distances = {
            let car = &self.cars[&id];
            match car.state {
                CarState::Queued { .. } => car.router.last_step(),
                CarState::Parking(_, _, _) => true,
                CarState::IdlingAtStop(_, _) => true,
                _ => false,
            }
        };

        if !need_distances {
            // We need to mutate two different cars in one case. To avoid fighting the borrow
            // checker, temporarily move one of them out of the map.
            let mut car = self.cars.remove(&id).unwrap();
            // Responsibility of update_car to manage scheduling stuff!
            need_distances = self.update_car_without_distances(&mut car, now, ctx, transit);
            self.cars.insert(id, car);
        }
        // Note we might set need_distances to true, so both of these conditionals might run.
        if need_distances {
            // Do this before removing the car!
            let dists = self.queues[&self.cars[&id].router.head()].get_car_positions(
                now,
                &self.cars,
                &self.queues,
            );
            let idx = dists
                .iter()
                .position(|entry| entry.member == Queued::Vehicle(id))
                .unwrap();

            // We need to mutate two different cars in some cases. To avoid fighting the borrow
            // checker, temporarily move one of them out of the map.
            let mut car = self.cars.remove(&id).unwrap();
            // Responsibility of update_car_with_distances to manage scheduling stuff!
            if self
                .update_car_with_distances(&mut car, &dists, idx, now, ctx, trips, transit, walking)
            {
                self.cars.insert(id, car);
            } else {
                self.delete_car_internal(&mut car, dists, idx, now, ctx);
            }
        }
    }

    // If this returns true, we need to immediately run update_car_with_distances. If we don't,
    // then the car will briefly be Queued and might immediately become something else, which
    // affects how leaders update followers.
    fn update_car_without_distances(
        &mut self,
        car: &mut Car,
        now: Time,
        ctx: &mut Ctx,
        transit: &mut TransitSimState,
    ) -> bool {
        match car.state {
            CarState::Crossing { .. } => {
                car.state = CarState::Queued {
                    blocked_since: now,
                    want_to_change_lanes: None,
                };
                if car.router.last_step() {
                    // Immediately run update_car_with_distances.
                    return true;
                }
                let queue = &self.queues[&car.router.head()];
                if queue.is_car_at_front(car.vehicle.id) {
                    // Want to re-run, but no urgency about it happening immediately.
                    car.state = CarState::WaitingToAdvance { blocked_since: now };
                    if self.recalc_lanechanging {
                        car.router.opportunistically_lanechange(
                            &self.queues,
                            ctx.map,
                            self.handle_uber_turns,
                        );
                    }
                    ctx.scheduler.push(now, Command::UpdateCar(car.vehicle.id));
                } else if let Some(slow_leader) = self.wants_to_overtake(car) {
                    // TODO This entire check kicks in a little late; we only enter Queued after
                    // spending the freeflow time possibly moving very slowly.
                    let first_conflict = car.wants_to_overtake.insert(slow_leader);

                    // Record when a vehicle wants to pass a bike
                    if first_conflict
                        && slow_leader.vehicle_type == VehicleType::Bike
                        && car.vehicle.vehicle_type != VehicleType::Bike
                    {
                        self.events.push(Event::ProblemEncountered(
                            self.cars[&slow_leader].trip_and_person.unwrap().0,
                            Problem::OvertakeDesired(queue.id),
                        ));
                    }

                    if let Some(target_lane) = self.pick_overtaking_lane(car, ctx.map) {
                        // We need the current position of the car to see if lane-changing is
                        // actually feasible right now, so record our intention and trigger
                        // update_car_with_distances.
                        car.state = CarState::Queued {
                            blocked_since: now,
                            want_to_change_lanes: Some(target_lane),
                        };
                        return true;
                    }
                }
            }
            CarState::Unparking {
                front,
                ref blocked_starts,
                ..
            } => {
                for lane in blocked_starts {
                    // Calculate the exact positions along this blocked queue (which is ***NOT***
                    // the same queue that the unparking car is in!). Use that to update the
                    // follower.
                    //
                    // It SHOULD be fine that the current car isn't currently in self.cars; the
                    // static blockage doesn't need it. But calculating positions on one queue may
                    // recurse to the queue where the current car is. So temporarily make the car
                    // visible in this query.
                    self.cars.insert(car.vehicle.id, car.clone());

                    let dists = self.queues[&Traversable::Lane(*lane)].get_car_positions(
                        now,
                        &self.cars,
                        &self.queues,
                    );

                    // Undo the above hack.
                    self.cars.remove(&car.vehicle.id);

                    let idx = dists.iter().position(|entry| matches!(entry.member, Queued::StaticBlockage { cause, ..} if cause == car.vehicle.id)).unwrap();
                    self.update_follower(idx, &dists, now, ctx);

                    self.queues
                        .get_mut(&Traversable::Lane(*lane))
                        .unwrap()
                        .clear_static_blockage(car.vehicle.id, idx);
                }

                if car.router.last_step() {
                    // Actually, we need to do this first. Ignore the answer -- if we're doing
                    // something weird like vanishing or re-parking immediately (quite unlikely),
                    // the next loop will pick that up. Just trigger the side effect of choosing an
                    // end_dist.
                    car.router.maybe_handle_end(
                        front,
                        &car.vehicle,
                        ctx.parking,
                        ctx.map,
                        car.trip_and_person,
                        &mut self.events,
                    );
                }
                car.state = car.crossing_state(front, now, ctx.map);
                ctx.scheduler
                    .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
                self.new_crossing_state(ctx, car);
            }
            CarState::WaitingToAdvance { blocked_since } => {
                // 'car' is the leader.
                let from = car.router.head();
                let goto = car.router.next();
                assert!(from != goto);

                if let Traversable::Turn(t) = goto {
                    if !ctx.intersections.maybe_start_turn(
                        AgentID::Car(car.vehicle.id),
                        t,
                        PathStep::Turn(t).max_speed_along(
                            car.vehicle.max_speed,
                            car.vehicle.vehicle_type.to_constraints(),
                            ctx.map,
                        ),
                        now,
                        ctx.map,
                        ctx.scheduler,
                        Some((car, &self.cars, &mut self.queues)),
                    ) {
                        // Don't schedule a retry here.
                        return false;
                    }
                    if let Some((trip, _)) = car.trip_and_person {
                        self.events.push(Event::IntersectionDelayMeasured(
                            trip,
                            t,
                            AgentID::Car(car.vehicle.id),
                            now - blocked_since,
                        ));
                    }
                }

                {
                    let queue = self.queues.get_mut(&from).unwrap();
                    assert_eq!(queue.move_first_car_to_laggy_head(), car.vehicle.id);
                }

                // We do NOT need to update the follower. If they were Queued, they'll remain that
                // way, until laggy_head is None.

                let last_step = car.router.advance(
                    &car.vehicle,
                    ctx.parking,
                    ctx.map,
                    car.trip_and_person,
                    &mut self.events,
                );
                car.total_blocked_time += now - blocked_since;
                car.state = car.crossing_state(Distance::ZERO, now, ctx.map);
                ctx.scheduler
                    .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
                self.events.push(Event::AgentEntersTraversable(
                    AgentID::Car(car.vehicle.id),
                    car.trip_and_person.map(|(t, _)| t),
                    goto,
                    if car.vehicle.vehicle_type.is_transit() {
                        Some(transit.get_passengers(car.vehicle.id).len())
                    } else {
                        None
                    },
                ));

                // Don't mark turn_finished until our back is out of the turn.
                car.last_steps.push_front(last_step);

                // Optimistically assume we'll be out of the way ASAP.
                // This is update, not push, because we might've scheduled a blind retry too late,
                // and the car actually crosses an entire new traversable in the meantime.
                ctx.scheduler.update(
                    car.crossing_state_with_end_dist(
                        DistanceInterval::new_driving(
                            Distance::ZERO,
                            car.vehicle.length + FOLLOWING_DISTANCE,
                        ),
                        now,
                        ctx.map,
                    )
                    .get_end_time(),
                    Command::UpdateLaggyHead(car.vehicle.id),
                );

                self.queues
                    .get_mut(&goto)
                    .unwrap()
                    .push_car_onto_end(car.vehicle.id);
            }
            CarState::ChangingLanes {
                from,
                new_time,
                new_dist,
                ..
            } => {
                // The car is already in the target queue. Just set them in the crossing state; we
                // already calculated the intervals for it.
                car.state = CarState::Crossing {
                    time_int: new_time,
                    dist_int: new_dist,
                    steep_uphill: false,
                };
                ctx.scheduler
                    .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));

                // And remove the blockage from the old queue. Similar to the note in this function
                // for Unparking, we calculate distances in that OTHER queue.
                let dists = self.queues[&Traversable::Lane(from)].get_car_positions(
                    now,
                    &self.cars,
                    &self.queues,
                );
                let idx = dists.iter().position(|entry| matches!(entry.member, Queued::DynamicBlockage { cause, ..} if cause == car.vehicle.id)).unwrap();
                self.update_follower(idx, &dists, now, ctx);

                self.queues
                    .get_mut(&Traversable::Lane(from))
                    .unwrap()
                    .clear_dynamic_blockage(car.vehicle.id, idx);
            }
            CarState::Queued { .. } => unreachable!(),
            CarState::Parking(_, _, _) => unreachable!(),
            CarState::IdlingAtStop(_, _) => unreachable!(),
        }
        false
    }

    // Returns true if the car survives.
    fn update_car_with_distances(
        &mut self,
        car: &mut Car,
        dists: &[QueueEntry],
        idx: usize,
        now: Time,
        ctx: &mut Ctx,
        trips: &mut TripManager,
        transit: &mut TransitSimState,
        walking: &mut WalkingSimState,
    ) -> bool {
        let our_dist = dists[idx].front;

        match car.state {
            CarState::Crossing { .. }
            | CarState::Unparking { .. }
            | CarState::WaitingToAdvance { .. }
            | CarState::ChangingLanes { .. } => unreachable!(),
            CarState::Queued {
                blocked_since,
                want_to_change_lanes,
            } => {
                // Two totally different reasons we'll wind up here: we want to lane-change, and
                // we're on our last step.
                if let Some(target_lane) = want_to_change_lanes {
                    self.try_start_lc(car, our_dist, idx, target_lane, now, ctx);
                    return true;
                }

                match car.router.maybe_handle_end(
                    our_dist,
                    &car.vehicle,
                    ctx.parking,
                    ctx.map,
                    car.trip_and_person,
                    &mut self.events,
                ) {
                    Some(ActionAtEnd::VanishAtBorder(i)) => {
                        car.total_blocked_time += now - blocked_since;
                        // Don't do this for buses
                        if car.trip_and_person.is_some() {
                            trips.car_or_bike_reached_border(
                                now,
                                car.vehicle.id,
                                i,
                                car.total_blocked_time,
                                car.router.get_path().total_length(),
                                ctx,
                            );
                        }
                        false
                    }
                    Some(ActionAtEnd::GiveUpOnParking) => {
                        car.total_blocked_time += now - blocked_since;
                        trips.cancel_trip(
                            now,
                            car.trip_and_person.unwrap().0,
                            "no available parking anywhere".to_string(),
                            // If we couldn't find parking normally, doesn't make sense to warp the
                            // car to the destination. There's no parking!
                            None,
                            ctx,
                        );
                        false
                    }
                    Some(ActionAtEnd::StartParking(spot)) => {
                        car.total_blocked_time += now - blocked_since;
                        let delay = match spot {
                            ParkingSpot::Onstreet(_, _) => self.time_to_park_onstreet,
                            ParkingSpot::Offstreet(_, _) | ParkingSpot::Lot(_, _) => {
                                self.time_to_park_offstreet
                            }
                        };
                        car.state =
                            CarState::Parking(our_dist, spot, TimeInterval::new(now, now + delay));
                        // If we don't do this, then we might have another car creep up behind, see
                        // the spot free, and start parking too. This can happen with multiple
                        // lanes and certain vehicle lengths.
                        ctx.parking.reserve_spot(spot, car.vehicle.id);
                        ctx.scheduler
                            .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
                        true
                    }
                    Some(ActionAtEnd::GotoLaneEnd) => {
                        car.total_blocked_time += now - blocked_since;
                        car.state = car.crossing_state(our_dist, now, ctx.map);
                        ctx.scheduler
                            .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
                        self.new_crossing_state(ctx, car);
                        true
                    }
                    Some(ActionAtEnd::StopBiking(bike_rack)) => {
                        car.total_blocked_time += now - blocked_since;
                        trips.bike_reached_end(
                            now,
                            car.vehicle.id,
                            bike_rack,
                            car.total_blocked_time,
                            car.router.get_path().total_length(),
                            ctx,
                        );
                        false
                    }
                    Some(ActionAtEnd::BusAtStop) => {
                        car.total_blocked_time += now - blocked_since;
                        if transit.bus_arrived_at_stop(now, car.vehicle.id, trips, walking, ctx) {
                            car.state = CarState::IdlingAtStop(
                                our_dist,
                                TimeInterval::new(now, now + TIME_TO_WAIT_AT_BUS_STOP),
                            );
                            ctx.scheduler
                                .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
                            true
                        } else {
                            // Vanishing at a border
                            false
                        }
                    }
                    None => {
                        ctx.scheduler.push(
                            now + BLIND_RETRY_TO_REACH_END_DIST,
                            Command::UpdateCar(car.vehicle.id),
                        );

                        // TODO For now, always use BLIND_RETRY_TO_REACH_END_DIST. Measured things
                        // to be slower otherwise. :(
                        /*
                        // If this car wasn't blocked at all, when would it reach its goal?
                        let ideal_end_time = match car.crossing_state(our_dist, now, map) {
                            CarState::Crossing { time_int, .. } => time_int.end,
                            _ => unreachable!(),
                        };
                        if ideal_end_time == now {
                            // Haha, no such luck. We're super super close to the goal, but not
                            // quite there yet.
                            scheduler.push(now + BLIND_RETRY_TO_REACH_END_DIST, Command::UpdateCar(car.vehicle.id));
                        } else {
                            scheduler.push(ideal_end_time, Command::UpdateCar(car.vehicle.id));
                        }
                        // TODO For cars stuck on their last step, this will spam a fair bit. But
                        // that should be pretty rare.
                        */

                        true
                    }
                }
            }
            CarState::Parking(_, spot, _) => {
                ctx.parking.add_parked_car(ParkedCar {
                    vehicle: car.vehicle.clone(),
                    spot,
                    parked_since: now,
                });
                trips.car_reached_parking_spot(
                    now,
                    car.vehicle.id,
                    spot,
                    car.total_blocked_time,
                    car.router.get_path().total_length(),
                    ctx,
                );
                false
            }
            CarState::IdlingAtStop(dist, _) => {
                car.router = transit.bus_departed_from_stop(car.vehicle.id, ctx.map);
                self.events
                    .push(Event::PathAmended(car.router.get_path().clone()));
                car.state = car.crossing_state(dist, now, ctx.map);
                ctx.scheduler
                    .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
                self.new_crossing_state(ctx, car);

                self.update_follower(idx, dists, now, ctx);

                true
            }
        }
    }

    /// Abruptly remove a vehicle from the simulation. They may be in any arbitrary state, like in
    /// the middle of a turn or parking.
    pub fn delete_car(&mut self, c: CarID, now: Time, ctx: &mut Ctx) -> Vehicle {
        self.waiting_to_spawn.remove(&c);

        let dists = self.queues[&self.cars[&c].router.head()].get_car_positions(
            now,
            &self.cars,
            &self.queues,
        );
        let idx = dists
            .iter()
            .position(|entry| entry.member == Queued::Vehicle(c))
            .unwrap();
        let mut car = self.cars.remove(&c).unwrap();

        // Hacks to delete cars that're mid-turn
        if let Traversable::Turn(t) = car.router.head() {
            let queue = self.queues.get_mut(&car.router.head()).unwrap();
            // delete_car_internal will call free_reserved_space, so this is necessary to balance
            // that.
            queue.reserved_length += car.vehicle.length + FOLLOWING_DISTANCE;
            ctx.intersections.agent_deleted_mid_turn(AgentID::Car(c), t);

            // Free any reserved space on the next step.
            let queue = self.queues.get_mut(&car.router.next()).unwrap();
            queue.free_reserved_space(&car);
        }
        if let Some(Traversable::Turn(t)) = car.router.maybe_next() {
            ctx.intersections.cancel_request(AgentID::Car(c), t);
        }

        if car.router.last_step() {
            ctx.parking.unreserve_spot(c);
        }

        self.delete_car_internal(&mut car, dists, idx, now, ctx);
        // delete_car_internal cancels UpdateLaggyHead
        ctx.scheduler.cancel(Command::UpdateCar(c));
        car.vehicle
    }

    fn delete_car_internal(
        &mut self,
        car: &mut Car,
        dists: Vec<QueueEntry>,
        idx: usize,
        now: Time,
        ctx: &mut Ctx,
    ) {
        {
            let queue = self.queues.get_mut(&car.router.head()).unwrap();
            queue.remove_car_from_idx(car.vehicle.id, idx);
            // trim_last_steps doesn't actually include the current queue!
            queue.free_reserved_space(car);
            let i = match queue.id {
                Traversable::Lane(l) => ctx.map.get_l(l).src_i,
                Traversable::Turn(t) => t.parent,
            };
            if ctx.handling_live_edits.is_none() {
                ctx.intersections
                    .space_freed(now, i, ctx.scheduler, ctx.map);
            }
        }

        ctx.intersections.vehicle_gone(car.vehicle.id);

        // We might be vanishing while partly clipping into other stuff.
        self.trim_last_steps(car, now, car.last_steps.len(), ctx);

        // We might've scheduled one of those using BLIND_RETRY_TO_CREEP_FORWARDS.
        ctx.scheduler
            .cancel(Command::UpdateLaggyHead(car.vehicle.id));

        self.update_follower(idx, &dists, now, ctx);
    }

    /// After a leader (maybe an active vehicle, maybe a static blockage) gets out of the way,
    /// update the follower so that they don't suddenly jump forwards.
    fn update_follower(
        &mut self,
        idx_leader: usize,
        dists: &[QueueEntry],
        now: Time,
        ctx: &mut Ctx,
    ) {
        if idx_leader == dists.len() - 1 {
            return;
        }
        let idx_follower = idx_leader + 1;

        if let Queued::Vehicle(follower_id) = dists[idx_follower].member {
            let follower_dist = dists[idx_follower].front;

            // If we're going to delete the follower soon, don't bother waking them up.
            if let Some(ref deleting_agents) = ctx.handling_live_edits {
                if deleting_agents.contains(&AgentID::Car(follower_id)) {
                    return;
                }
            }

            let mut follower = self.cars.get_mut(&follower_id).unwrap();
            // TODO If the leader vanished at a border node, this still jumps a bit -- the lead
            // car's back is still sticking out. Need to still be bound by them, even though they
            // don't exist! If the leader just parked, then we're fine.
            match follower.state {
                CarState::Queued { blocked_since, .. } => {
                    // TODO If they're on their last step, they might be ending early and not right
                    // behind us? !follower.router.last_step()

                    // Prevent them from jumping forwards.
                    follower.total_blocked_time += now - blocked_since;
                    follower.state = follower.crossing_state(follower_dist, now, ctx.map);
                    ctx.scheduler.update(
                        follower.state.get_end_time(),
                        Command::UpdateCar(follower_id),
                    );
                    let follower = &self.cars[&follower_id];
                    self.new_crossing_state(ctx, follower);
                }
                CarState::Crossing { .. } => {
                    // If the follower was still Crossing, they might not've been blocked by the
                    // leader yet. But recalculating their Crossing state isn't necessarily a no-op
                    // -- this could prevent them from suddenly warping past a blockage.
                    follower.state = follower.crossing_state(follower_dist, now, ctx.map);
                    ctx.scheduler.update(
                        follower.state.get_end_time(),
                        Command::UpdateCar(follower_id),
                    );
                    // This'll possibly update the ETA
                    let follower = &self.cars[&follower_id];
                    self.new_crossing_state(ctx, follower);
                }
                CarState::ChangingLanes {
                    from, to, lc_time, ..
                } => {
                    // This is a fun case -- something stopped blocking somebody that was in the
                    // process of lane-changing! Similar to the Crossing case above, we just have
                    // to update the distance/time intervals, but otherwise leave them in the
                    // middle of their lane-changing. It's guaranteed that lc_time will continue to
                    // finish before the new time interval, because there's no possible way
                    // recalculating this crossing state here will speed things up from the
                    // original estimate.
                    let (new_time, new_dist) = match follower.crossing_state_with_end_dist(
                        DistanceInterval::new_driving(follower_dist, ctx.map.get_l(to).length()),
                        now,
                        ctx.map,
                    ) {
                        CarState::Crossing {
                            time_int, dist_int, ..
                        } => (time_int, dist_int),
                        _ => unreachable!(),
                    };
                    assert!(new_time.end >= lc_time.end);
                    follower.state = CarState::ChangingLanes {
                        from,
                        to,
                        new_time,
                        new_dist,
                        lc_time,
                    };
                }
                // They weren't blocked
                CarState::Unparking { .. }
                | CarState::Parking(_, _, _)
                | CarState::IdlingAtStop(_, _) => {}
                CarState::WaitingToAdvance { .. } => unreachable!(),
            }
        }
    }

    pub fn update_laggy_head(&mut self, id: CarID, now: Time, ctx: &mut Ctx) {
        let currently_on = self.cars[&id].router.head();
        // This car must be the tail.
        let dist_along_last = {
            let (last_id, dist) = self.queues[&currently_on]
                .get_last_car_position(now, &self.cars, &self.queues)
                .unwrap();
            if id != last_id {
                panic!(
                    "At {} on {:?}, laggy head {} isn't the last on the lane; it's {}",
                    now, currently_on, id, last_id
                );
            }
            dist
        };

        // Trim off as many of the oldest last_steps as we've made distance.
        let mut dist_left_to_cleanup = self.cars[&id].vehicle.length + FOLLOWING_DISTANCE;
        dist_left_to_cleanup -= dist_along_last;
        let mut num_to_trim = None;
        for (idx, step) in self.cars[&id].last_steps.iter().enumerate() {
            if dist_left_to_cleanup <= Distance::ZERO {
                num_to_trim = Some(self.cars[&id].last_steps.len() - idx);
                break;
            }
            dist_left_to_cleanup -= step.get_polyline(ctx.map).length();
        }

        if let Some(n) = num_to_trim {
            let mut car = self.cars.remove(&id).unwrap();
            self.trim_last_steps(&mut car, now, n, ctx);
            self.cars.insert(id, car);
        }

        if !self.cars[&id].last_steps.is_empty() {
            // Might have to retry again later.
            let retry_at = self.cars[&id]
                .crossing_state_with_end_dist(
                    // Update again when we've completely cleared all last_steps. We could be more
                    // precise and do it sooner when we clear the last step, but a little delay is
                    // fine for correctness.
                    DistanceInterval::new_driving(
                        dist_along_last,
                        self.cars[&id].vehicle.length + FOLLOWING_DISTANCE,
                    ),
                    now,
                    ctx.map,
                )
                .get_end_time();
            // Sometimes due to rounding, retry_at will be exactly time, but we really need to
            // wait a bit longer.
            // TODO Smarter retry based on states and stuckness?
            if retry_at > now {
                ctx.scheduler.push(retry_at, Command::UpdateLaggyHead(id));
            } else {
                // If we look up car positions before this retry happens, weird things can
                // happen -- the laggy head could be well clear of the old queue by then. Make
                // sure to handle that there. Consequences of this retry being long? A follower
                // will wait a bit before advancing.
                ctx.scheduler.push(
                    now + BLIND_RETRY_TO_CREEP_FORWARDS,
                    Command::UpdateLaggyHead(id),
                );
            }
        }
    }

    // Caller has to figure out how many steps to trim!
    fn trim_last_steps(&mut self, car: &mut Car, now: Time, n: usize, ctx: &mut Ctx) {
        for i in 0..n {
            let on = car.last_steps.pop_back().unwrap();
            let old_queue = self.queues.get_mut(&on).unwrap();
            assert_eq!(old_queue.laggy_head, Some(car.vehicle.id));
            old_queue.laggy_head = None;
            match on {
                Traversable::Turn(t) => {
                    ctx.intersections.turn_finished(
                        now,
                        AgentID::Car(car.vehicle.id),
                        t,
                        ctx.scheduler,
                        ctx.map,
                        ctx.handling_live_edits.is_some(),
                    );
                }
                Traversable::Lane(l) => {
                    old_queue.free_reserved_space(car);
                    if ctx.handling_live_edits.is_none() {
                        ctx.intersections.space_freed(
                            now,
                            ctx.map.get_l(l).src_i,
                            ctx.scheduler,
                            ctx.map,
                        );
                    }
                }
            }

            if i == 0 {
                // Wake up the follower
                if let Some(follower_id) = old_queue.get_active_cars().get(0) {
                    // TODO Stop using get_active_cars for this! Be paranoid.
                    if old_queue.is_car_at_front(*follower_id) {
                        let mut follower = self.cars.get_mut(follower_id).unwrap();

                        match follower.state {
                            CarState::Queued { blocked_since, .. } => {
                                // If they're on their last step, they might be ending early and not
                                // right behind us.
                                if !follower.router.last_step() {
                                    // The follower has been smoothly following while the laggy head
                                    // gets out of the way. So immediately promote them to
                                    // WaitingToAdvance.
                                    follower.state = CarState::WaitingToAdvance { blocked_since };
                                    if self.recalc_lanechanging && ctx.handling_live_edits.is_none()
                                    {
                                        follower.router.opportunistically_lanechange(
                                            &self.queues,
                                            ctx.map,
                                            self.handle_uber_turns,
                                        );
                                    }
                                    ctx.scheduler
                                        .push(now, Command::UpdateCar(follower.vehicle.id));
                                }
                            }
                            CarState::WaitingToAdvance { .. } => unreachable!(),
                            // They weren't blocked. Note that there's no way the Crossing state could
                            // jump forwards here; the leader vanished from the end of the traversable.
                            CarState::Crossing { .. }
                            | CarState::ChangingLanes { .. }
                            | CarState::Unparking { .. }
                            | CarState::Parking(_, _, _)
                            | CarState::IdlingAtStop(_, _) => {}
                        }
                    }
                }
            } else {
                // Only the last step we cleared could possibly have cars. Any intermediates, this
                // car was previously completely blocking them.
                assert!(old_queue.get_active_cars().is_empty());
            }
        }
    }

    /// If the car wants to over-take somebody, what adjacent lane should they use?
    /// - The lane must be in the same direction as the current; no support for crossing the road's
    ///   yellow line yet.
    /// - Prefer passing on the left (for DrivingSide::Right)
    /// For now, just pick one candidate lane, even if both might be usable.
    fn pick_overtaking_lane(&self, car: &Car, map: &Map) -> Option<LaneID> {
        // Don't overtake in the middle of a turn!
        let current_lane = map.get_l(car.router.head().maybe_lane()?);
        let road = map.get_parent(current_lane.id);
        let idx = current_lane.id.offset;

        let mut candidates = Vec::new();
        if idx != 0 {
            candidates.push(road.lanes[idx - 1].id);
        }
        if idx != road.lanes.len() - 1 {
            candidates.push(road.lanes[idx + 1].id);
        }
        if map.get_config().driving_side == DrivingSide::Left {
            candidates.reverse();
        }

        for l in candidates {
            let target_lane = map.get_l(l);
            // Must be the same direction -- no crossing into oncoming traffic yet
            if current_lane.dir != target_lane.dir {
                continue;
            }
            // The lane types can differ, as long as the vehicle can use the target. Imagine
            // overtaking a slower cyclist in a bike lane using the rest of the road.
            if !car
                .vehicle
                .vehicle_type
                .to_constraints()
                .can_use(target_lane, map)
            {
                continue;
            }
            // Is this other lane compatible with the path? We won't make any attempts to return to the
            // original lane after changing.
            if !car
                .router
                .can_lanechange(current_lane.id, target_lane.id, map)
            {
                continue;
            }
            return Some(target_lane.id);
        }

        None
    }

    fn try_start_lc(
        &mut self,
        car: &mut Car,
        front_current_queue: Distance,
        idx_in_current_queue: usize,
        target_lane: LaneID,
        now: Time,
        ctx: &mut Ctx,
    ) {
        // If we are a laggy head somewhere else (our back is still sticking into another lane or
        // turn), don't start lane-changing!
        if !car.last_steps.is_empty() {
            return;
        }
        // If the lanes are very different lengths and we're too close to the end at the target,
        // not going to work.
        if front_current_queue >= ctx.map.get_l(target_lane).length() {
            return;
        }
        let current_lane = car.router.head().as_lane();
        let front_target_queue = Position::new(current_lane, front_current_queue)
            .equiv_pos(target_lane, ctx.map)
            .dist_along();

        // Calculate the crossing state in the target queue. Pass in the DistanceInterval
        // explicitly, because we haven't modified the route yet.
        let (new_time, new_dist) = match car.crossing_state_with_end_dist(
            DistanceInterval::new_driving(front_target_queue, ctx.map.get_l(target_lane).length()),
            now,
            ctx.map,
        ) {
            CarState::Crossing {
                time_int, dist_int, ..
            } => (time_int, dist_int),
            _ => unreachable!(),
        };

        // Do we have enough time to finish the lane-change, assuming that we go as fast as
        // possible in the target?
        let lc_time = TimeInterval::new(now, now + TIME_TO_CHANGE_LANES);
        if lc_time.end >= new_time.end {
            return;
        }

        // Is there room for us to sliiiide on over into that lane's DMs?
        if let Some(idx_in_target_queue) = self.queues[&Traversable::Lane(target_lane)]
            .get_idx_to_insert_car(
                front_target_queue,
                car.vehicle.length,
                now,
                &self.cars,
                &self.queues,
            )
        {
            // TODO Can downgrade this to an alert or debug once active work has settled down
            if false {
                info!(
                    "{} is starting to change lanes from {} to {}",
                    car.vehicle.id,
                    car.router.head(),
                    target_lane
                );
            }

            // Exit the old queue (leaving a dynamic blockage in place)
            self.queues
                .get_mut(&car.router.head())
                .unwrap()
                .replace_car_with_dynamic_blockage(car, idx_in_current_queue);

            // Change the path
            car.router.confirm_lanechange(target_lane, ctx.map);

            // Insert into the new queue
            self.queues
                .get_mut(&car.router.head())
                .unwrap()
                .insert_car_at_idx(idx_in_target_queue, car);

            // Put into the new state
            car.state = CarState::ChangingLanes {
                from: current_lane,
                to: target_lane,
                new_time,
                new_dist,
                lc_time,
            };
            ctx.scheduler
                .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
        }
    }

    pub fn collect_events(&mut self) -> Vec<Event> {
        std::mem::take(&mut self.events)
    }

    pub fn handle_live_edits(&mut self, map: &Map) {
        // Calculate all queues that should exist now.
        let mut new_queues = HashSet::new();
        for l in map.all_lanes() {
            if l.lane_type.is_for_moving_vehicles() {
                new_queues.insert(Traversable::Lane(l.id));
            }
        }
        for t in map.all_turns() {
            if !t.between_sidewalks() {
                new_queues.insert(Traversable::Turn(t.id));
            }
        }

        // Delete any old queues.
        self.queues.retain(|k, v| {
            if new_queues.remove(k) {
                // No changes
                true
            } else {
                // Make sure it's empty!
                if v.laggy_head.is_some() || !v.get_active_cars().is_empty() {
                    panic!(
                        "After live map edits, deleted queue {} still has vehicles! {:?}, {:?}",
                        k,
                        v.laggy_head,
                        v.get_active_cars()
                    );
                }
                false
            }
        });

        // Create any new queues
        for key in new_queues {
            self.queues.insert(key, Queue::new(key, map));
        }
    }

    fn new_crossing_state(&self, ctx: &mut Ctx, car: &Car) {
        if self.queues[&car.router.head()].is_car_at_front(car.vehicle.id) {
            if let Some(Traversable::Turn(turn)) = car.router.maybe_next() {
                ctx.intersections.approaching_leader(
                    AgentID::Car(car.vehicle.id),
                    turn,
                    car.state.get_end_time(),
                );
            }
        }
    }
}

// Queries
impl DrivingSimState {
    /// Note the ordering of results is non-deterministic!
    pub fn get_unzoomed_agents(&self, now: Time, map: &Map) -> Vec<UnzoomedAgent> {
        let mut result = Vec::new();

        for queue in self.queues.values() {
            if queue.get_active_cars().is_empty() {
                continue;
            }

            for entry in queue.get_car_positions(now, &self.cars, &self.queues) {
                if let Queued::Vehicle(c) = entry.member {
                    let car = &self.cars[&c];
                    result.push(UnzoomedAgent {
                        id: AgentID::Car(car.vehicle.id),
                        pos: match queue.id.get_polyline(map).dist_along(entry.front) {
                            Ok((pt, _)) => pt,
                            Err(err) => panic!(
                                "At {}, invalid dist_along of {} for queue {}: {}",
                                now, entry.front, queue.id, err
                            ),
                        },
                        person: car.trip_and_person.map(|(_, p)| p),
                        parking: car.is_parking(),
                    });
                }
            }
        }

        for (id, (pos, person)) in &self.waiting_to_spawn {
            result.push(UnzoomedAgent {
                id: AgentID::Car(*id),
                pos: pos.pt(map),
                person: *person,
                parking: false,
            });
        }

        result
    }

    pub fn does_car_exist(&self, id: CarID) -> bool {
        // Because of the shortcut IndexableKey takes with ignoring the VehicleType part of the ID,
        // we have to double-check that it matches!
        match self.cars.get(&id) {
            Some(car) => car.vehicle.id == id,
            None => false,
        }
    }

    /// Note the ordering of results is non-deterministic!
    pub fn get_all_draw_cars(
        &self,
        now: Time,
        map: &Map,
        transit: &TransitSimState,
    ) -> Vec<DrawCarInput> {
        let mut result = Vec::new();
        for queue in self.queues.values() {
            result.extend(
                queue
                    .get_car_positions(now, &self.cars, &self.queues)
                    .into_iter()
                    .filter_map(|entry| {
                        if let Queued::Vehicle(id) = entry.member {
                            Some(self.cars[&id].get_draw_car(entry.front, now, map, transit))
                        } else {
                            None
                        }
                    }),
            );
        }
        result
    }

    /// This is about as expensive as get_draw_cars_on.
    pub fn get_single_draw_car(
        &self,
        id: CarID,
        now: Time,
        map: &Map,
        transit: &TransitSimState,
    ) -> Option<DrawCarInput> {
        let car = self.cars.get(&id)?;
        self.get_draw_cars_on(now, car.router.head(), map, transit)
            .into_iter()
            .find(|d| d.id == id)
    }

    pub fn get_draw_cars_on(
        &self,
        now: Time,
        on: Traversable,
        map: &Map,
        transit: &TransitSimState,
    ) -> Vec<DrawCarInput> {
        match self.queues.get(&on) {
            Some(q) => q
                .get_car_positions(now, &self.cars, &self.queues)
                .into_iter()
                .filter_map(|entry| match entry.member {
                    Queued::Vehicle(id) => {
                        Some(self.cars[&id].get_draw_car(entry.front, now, map, transit))
                    }
                    // Manually enable to debug exiting driveways and lane-changing
                    Queued::StaticBlockage { cause, front, back } => {
                        if false {
                            Some(DrawCarInput {
                                id: cause,
                                waiting_for_turn: None,
                                status: CarStatus::Parked,
                                intent: None,
                                on,
                                partly_on: Vec::new(),
                                label: Some("block".to_string()),
                                person: None,
                                body: on.get_polyline(map).exact_slice(back, front),
                            })
                        } else {
                            None
                        }
                    }
                    Queued::DynamicBlockage { cause, vehicle_len } => {
                        if false {
                            Some(DrawCarInput {
                                id: cause,
                                waiting_for_turn: None,
                                status: CarStatus::Parked,
                                intent: None,
                                on,
                                partly_on: Vec::new(),
                                label: Some("block".to_string()),
                                person: None,
                                body: on
                                    .get_polyline(map)
                                    .exact_slice(entry.front - vehicle_len, entry.front),
                            })
                        } else {
                            None
                        }
                    }
                })
                .collect(),
            None => Vec::new(),
        }
    }

    pub fn debug_car_json(&self, id: CarID) -> String {
        if let Some(ref car) = self.cars.get(&id) {
            abstutil::to_json(car)
        } else {
            format!("{} is parked somewhere", id)
        }
    }

    pub fn debug_car_ui(&self, id: CarID) -> String {
        if let Some(car) = self.cars.get(&id) {
            format!("{:?}", car.state)
        } else {
            format!("{} isn't in DrivingSimState", id)
        }
    }

    pub fn debug_lane(&self, id: LaneID) {
        if let Some(ref queue) = self.queues.get(&Traversable::Lane(id)) {
            println!("{}", abstutil::to_json(queue));
        }
    }

    pub fn agent_properties(&self, id: CarID, now: Time) -> AgentProperties {
        if let Some(car) = self.cars.get(&id) {
            let path = car.router.get_path();
            let time_spent_waiting = car.state.time_spent_waiting(now);

            // In all cases, we can figure out exactly where we are along the current queue, then
            // assume we've travelled from the start of that, unless it's the very first step.
            let front = self.get_car_front(now, car);
            let current_state_dist =
                if car.router.head() == Traversable::Lane(path.get_req().start.lane()) {
                    front - path.get_req().start.dist_along()
                } else {
                    front
                };

            AgentProperties {
                total_time: now - car.started_at,
                waiting_here: time_spent_waiting,
                total_waiting: car.total_blocked_time + time_spent_waiting,
                dist_crossed: path.crossed_so_far() + current_state_dist,
                total_dist: path.total_length(),
            }
        } else {
            for car in self.waiting_to_spawn.keys() {
                if id == *car {
                    // If the vehicle is waiting to spawn, we don't have any stats on them yet.  We
                    // could track when they originally tried to spawn and use for a few of these
                    // fields, but we should also make sure that delay gets recorded later.
                    return AgentProperties {
                        total_time: Duration::ZERO,
                        waiting_here: Duration::ZERO,
                        total_waiting: Duration::ZERO,
                        dist_crossed: Distance::ZERO,
                        total_dist: Distance::ZERO,
                    };
                }
            }
            panic!(
                "Can't get agent_properties of {} at {}; they don't exist",
                id, now
            );
        }
    }

    pub fn get_path(&self, id: CarID) -> Option<&Path> {
        let car = self.cars.get(&id)?;
        Some(car.router.get_path())
    }
    pub fn get_all_driving_paths(&self) -> Vec<&Path> {
        self.cars
            .values()
            .map(|car| car.router.get_path())
            .collect()
    }

    pub fn trace_route(&self, now: Time, id: CarID, map: &Map) -> Option<PolyLine> {
        let car = self.cars.get(&id)?;
        let front = self.get_car_front(now, car);
        car.router.get_path().trace_from_start(map, front)
    }

    pub fn percent_along_route(&self, id: CarID) -> f64 {
        self.cars[&id].router.get_path().percent_dist_crossed()
    }

    pub fn get_owner_of_car(&self, id: CarID) -> Option<PersonID> {
        let car = self.cars.get(&id)?;
        car.vehicle.owner
    }

    pub fn target_lane_penalty(&self, l: LaneID) -> (usize, usize) {
        self.queues[&Traversable::Lane(l)].target_lane_penalty()
    }

    pub fn find_trips_to_edited_parking(
        &self,
        spots: BTreeSet<ParkingSpot>,
    ) -> Vec<(AgentID, TripID)> {
        let mut affected = Vec::new();
        for car in self.cars.values() {
            if let Some(spot) = car.router.get_parking_spot_goal() {
                if !spots.contains(spot) {
                    // Buses don't park
                    affected.push((AgentID::Car(car.vehicle.id), car.trip_and_person.unwrap().0));
                }
            }
        }
        affected
    }

    /// Finds vehicles that're laggy heads on affected parts of the map.
    pub fn find_vehicles_affected_by_live_edits(
        &self,
        closed_intersections: &HashSet<IntersectionID>,
        edited_lanes: &BTreeSet<LaneID>,
    ) -> Vec<(AgentID, TripID)> {
        let mut affected = Vec::new();
        for car in self.cars.values() {
            if car.last_steps.iter().any(|step| match step {
                Traversable::Lane(l) => edited_lanes.contains(l),
                Traversable::Turn(t) => {
                    closed_intersections.contains(&t.parent)
                        || edited_lanes.contains(&t.src)
                        || edited_lanes.contains(&t.dst)
                }
            }) {
                // TODO Buses aren't handled yet! Mostly not a big deal, because they're pretty
                // much never created anyway.
                if let Some((trip, _)) = car.trip_and_person {
                    affected.push((AgentID::Car(car.vehicle.id), trip));
                }
            }
        }
        affected
    }

    pub fn all_waiting_people(&self, now: Time, delays: &mut BTreeMap<PersonID, Duration>) {
        for c in self.cars.values() {
            if let Some((_, person)) = c.trip_and_person {
                let delay = c.state.time_spent_waiting(now);
                if delay > Duration::ZERO {
                    delays.insert(person, delay);
                }
            }
        }
    }

    pub fn debug_queue_lengths(&self, l: LaneID) -> Option<(Distance, Distance)> {
        let queue = self.queues.get(&Traversable::Lane(l))?;
        Some((queue.reserved_length, queue.geom_len))
    }

    pub fn get_blocked_by_graph(
        &self,
        now: Time,
        map: &Map,
        intersections: &IntersectionSimState,
    ) -> BTreeMap<AgentID, (Duration, DelayCause)> {
        let mut graph = BTreeMap::new();

        // Just look for every case where somebody is behind someone else, whether or not they're
        // blocked by them and waiting.
        for queue in self.queues.values() {
            if let Some(head) = queue.laggy_head {
                if let Some(next) = queue.get_active_cars().get(0) {
                    graph.insert(
                        AgentID::Car(*next),
                        (
                            self.cars[&head].state.time_spent_waiting(now),
                            DelayCause::Agent(AgentID::Car(head)),
                        ),
                    );
                }
            }
            // This doesn't need to account for blockages. Somebody unparking won't start doing it
            // until they're guaranteed to be able to finish it.
            let cars = queue.get_active_cars();
            for (head, tail) in cars.iter().zip(cars.iter().skip(1)) {
                graph.insert(
                    AgentID::Car(*tail),
                    (
                        self.cars[tail].state.time_spent_waiting(now),
                        DelayCause::Agent(AgentID::Car(*head)),
                    ),
                );
            }
        }

        intersections.populate_blocked_by(now, &mut graph, map, &self.cars, &self.queues);
        graph
    }

    fn get_car_front(&self, now: Time, car: &Car) -> Distance {
        self.queues[&car.router.head()]
            .get_car_positions(now, &self.cars, &self.queues)
            .into_iter()
            .find(|entry| entry.member == Queued::Vehicle(car.vehicle.id))
            .unwrap()
            .front
    }

    /// Does the given car want to over-take the vehicle in front of it?
    fn wants_to_overtake(&self, car: &Car) -> Option<CarID> {
        let queue = &self.queues[&car.router.head()];
        let leader = &self.cars[&queue.get_leader(car.vehicle.id)?];

        // Are we faster than them?
        // TODO This shouldn't be a blocking check; we also want to pass parking cars and buses
        // waiting at stops.
        let their_speed = leader.vehicle.max_speed?;
        if car
            .vehicle
            .max_speed
            .map(|s| s <= their_speed)
            .unwrap_or(false)
        {
            return None;
        }

        // Are they moving slowly or also stuck behind someone?
        match leader.state {
            // TODO Maybe we want to pass someone queued, if they're too slow to pass their own
            // leader?
            CarState::WaitingToAdvance { .. } | CarState::Queued { .. } => {
                return None;
            }
            // In all other cases, we may want to pass them.
            _ => {}
        }

        // TODO Check if there's room in front of them to pass. Handle passing two bikes?
        // TODO Check remaining distance before next intersection
        // TODO Check relative speed difference, and time to pass them
        // TODO Eventually, check if there's room to do the maneuever (lane-changing to
        // the left only, or popping into an oncoming lane!

        Some(leader.vehicle.id)
    }
}

// This implementation relies on the fact that car IDs are unique just by their number. Vehicle
// type is also in there, but during lookup, it'll be ignored!
impl IndexableKey for CarID {
    fn index(&self) -> usize {
        self.id
    }
}