1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
use std::collections::VecDeque;

use serde::{Deserialize, Serialize};

use geom::{Distance, Duration, PolyLine, Time, EPSILON_DIST};
use map_model::{Direction, Map, Traversable};

use crate::{
    CarStatus, DistanceInterval, DrawCarInput, ParkingSpot, PersonID, Router, TimeInterval,
    TransitSimState, TripID, Vehicle, VehicleType,
};

/// Represents a single vehicle. Note "car" is a misnomer; it could also be a bus or bike.
#[derive(Debug, Serialize, Deserialize, Clone)]
pub(crate) struct Car {
    pub vehicle: Vehicle,
    pub state: CarState,
    pub router: Router,
    /// None for buses
    // TODO Can we scrap person here and use vehicle owner?
    pub trip_and_person: Option<(TripID, PersonID)>,
    pub started_at: Time,
    pub total_blocked_time: Duration,

    /// In reverse order -- most recently left is first. The sum length of these must be >=
    /// vehicle.length.
    pub last_steps: VecDeque<Traversable>,
}

impl Car {
    /// Assumes the current head of the path is the thing to cross.
    pub fn crossing_state(&self, start_dist: Distance, start_time: Time, map: &Map) -> CarState {
        let dist_int = DistanceInterval::new_driving(
            start_dist,
            if self.router.last_step() {
                self.router.get_end_dist()
            } else {
                self.router.head().length(map)
            },
        );
        self.crossing_state_with_end_dist(dist_int, start_time, map)
    }

    pub fn crossing_state_with_end_dist(
        &self,
        dist_int: DistanceInterval,
        start_time: Time,
        map: &Map,
    ) -> CarState {
        let speed = self.router.head().max_speed_along(
            self.vehicle.max_speed,
            self.vehicle.vehicle_type.to_constraints(),
            map,
        );
        let dt = (dist_int.end - dist_int.start) / speed;
        CarState::Crossing(TimeInterval::new(start_time, start_time + dt), dist_int)
    }

    pub fn get_draw_car(
        &self,
        front: Distance,
        now: Time,
        map: &Map,
        transit: &TransitSimState,
    ) -> DrawCarInput {
        assert!(front >= Distance::ZERO);
        // This goes from back to front
        let mut partly_on = Vec::new();
        let raw_body = if front >= self.vehicle.length {
            self.router
                .head()
                .exact_slice(front - self.vehicle.length, front, map)
        } else {
            // TODO This is redoing some of the Path::trace work...
            let mut result = self
                .router
                .head()
                .slice(Distance::ZERO, front, map)
                .map(|(pl, _)| pl.into_points())
                .ok()
                .unwrap_or_else(Vec::new);
            let mut leftover = self.vehicle.length - front;
            let mut i = 0;
            while leftover > Distance::ZERO {
                if i == self.last_steps.len() {
                    // The vehicle is gradually appearing from somewhere. That's fine, just return
                    // a truncated body.
                    break;
                }
                partly_on.push(self.last_steps[i]);
                let len = self.last_steps[i].length(map);
                let start = (len - leftover).max(Distance::ZERO);
                let piece = self.last_steps[i]
                    .slice(start, len, map)
                    .map(|(pl, _)| pl.into_points())
                    .ok()
                    .unwrap_or_else(Vec::new);
                result = match PolyLine::append(piece, result) {
                    Ok(pl) => pl,
                    Err(err) => panic!(
                        "{} at {} has weird geom along {:?}: {}",
                        self.vehicle.id, now, self.last_steps, err
                    ),
                };
                leftover -= len;
                i += 1;
            }

            if result.len() < 2 {
                // Vehicles spawning at a border start with their front at literally 0 distance.
                // Usually by the time we first try to render, they've advanced at least a little.
                // But sometimes there's a race when we try to immediately draw them.
                if let Ok((pl, _)) =
                    self.router
                        .head()
                        .slice(Distance::ZERO, 2.0 * EPSILON_DIST, map)
                {
                    result = pl.into_points();
                }
            }
            match PolyLine::new(result) {
                Ok(pl) => pl,
                Err(err) => panic!("Weird body for {} at {}: {}", self.vehicle.id, now, err),
            }
        };

        let body = match self.state {
            CarState::Unparking(_, ref spot, ref time_int)
            | CarState::Parking(_, ref spot, ref time_int) => {
                let (percent_time, is_parking) = match self.state {
                    CarState::Unparking(_, _, _) => (1.0 - time_int.percent(now), false),
                    CarState::Parking(_, _, _) => (time_int.percent(now), true),
                    _ => unreachable!(),
                };
                match spot {
                    ParkingSpot::Onstreet(parking_l, _) => {
                        let r = map.get_parent(*parking_l);
                        let driving_offset = r.offset(self.router.head().as_lane());
                        let parking_offset = r.offset(*parking_l);
                        let mut diff = (parking_offset as isize) - (driving_offset as isize);
                        if map.get_l(self.router.head().as_lane()).dir == Direction::Back {
                            diff *= -1;
                        }
                        // TODO Sum widths in between, don't assume they're all the same as the
                        // parking lane width!
                        let width = map.get_l(*parking_l).width * (diff as f64) * percent_time;
                        match raw_body.shift_right(width) {
                            Ok(pl) => pl,
                            Err(err) => {
                                println!(
                                    "Body for onstreet {} at {} broken: {}",
                                    self.vehicle.id, now, err
                                );
                                raw_body.clone()
                            }
                        }
                    }
                    _ => {
                        let driveway = match spot {
                            ParkingSpot::Offstreet(b, _) => {
                                map.get_b(*b).driving_connection(map).unwrap().1
                            }
                            ParkingSpot::Lot(pl, _) => map.get_pl(*pl).driveway_line.clone(),
                            _ => unreachable!(),
                        };

                        // Append the car's polyline on the street with the driveway
                        let maybe_full_piece = if is_parking {
                            raw_body.clone().extend(driveway.reversed())
                        } else {
                            driveway
                                .clone()
                                .extend(raw_body.clone())
                                .map(|pl| pl.reversed())
                        };
                        let full_piece = match maybe_full_piece {
                            Ok(pl) => pl,
                            Err(err) => {
                                println!(
                                    "Body and driveway for {} at {} broken: {}",
                                    self.vehicle.id, now, err
                                );
                                raw_body.clone()
                            }
                        };
                        // Then make the car creep along the added length of the driveway (which
                        // could be really short)
                        let creep_along = driveway.length() * percent_time;
                        // TODO Ideally the car would slowly (dis)appear into the building, but
                        // some stuff downstream needs to understand that the windows and such will
                        // get cut off. :)
                        let sliced =
                            full_piece.exact_slice(creep_along, creep_along + self.vehicle.length);
                        if is_parking {
                            sliced
                        } else {
                            sliced.reversed()
                        }
                    }
                }
            }
            _ => raw_body,
        };

        DrawCarInput {
            id: self.vehicle.id,
            waiting_for_turn: match self.state {
                // TODO Maybe also when Crossing?
                CarState::WaitingToAdvance { .. } | CarState::Queued { .. } => {
                    match self.router.maybe_next() {
                        Some(Traversable::Turn(t)) => Some(t),
                        _ => None,
                    }
                }
                _ => None,
            },
            status: match self.state {
                CarState::Queued { .. } => CarStatus::Moving,
                CarState::WaitingToAdvance { .. } => CarStatus::Moving,
                CarState::Crossing(_, _) => CarStatus::Moving,
                CarState::Unparking(_, _, _) => CarStatus::Moving,
                CarState::Parking(_, _, _) => CarStatus::Moving,
                // Changing color for idling buses is helpful
                CarState::IdlingAtStop(_, _) => CarStatus::Parked,
            },
            show_parking_intent: match (self.is_parking(), &self.state) {
                (true, _) | (_, CarState::Unparking(_, _, _)) => true,
                _ => false,
            },
            on: self.router.head(),
            partly_on,
            label: if self.vehicle.vehicle_type == VehicleType::Bus
                || self.vehicle.vehicle_type == VehicleType::Train
            {
                Some(
                    map.get_br(transit.bus_route(self.vehicle.id))
                        .short_name
                        .clone(),
                )
            } else {
                None
            },
            body,
            person: self.trip_and_person.map(|(_, p)| p),
        }
    }

    pub fn is_parking(&self) -> bool {
        if let CarState::Parking(_, _, _) = self.state {
            return true;
        }
        self.router.is_parking()
    }
}

/// See <https://a-b-street.github.io/docs/trafficsim/discrete_event.html> for details about the
/// state machine encoded here.
#[derive(Debug, Serialize, Deserialize, Clone)]
pub(crate) enum CarState {
    Crossing(TimeInterval, DistanceInterval),
    Queued {
        blocked_since: Time,
    },
    WaitingToAdvance {
        blocked_since: Time,
    },
    /// Where's the front of the car while this is happening?
    Unparking(Distance, ParkingSpot, TimeInterval),
    Parking(Distance, ParkingSpot, TimeInterval),
    IdlingAtStop(Distance, TimeInterval),
}

impl CarState {
    pub fn get_end_time(&self) -> Time {
        match self {
            CarState::Crossing(ref time_int, _) => time_int.end,
            CarState::Queued { .. } => unreachable!(),
            CarState::WaitingToAdvance { .. } => unreachable!(),
            CarState::Unparking(_, _, ref time_int) => time_int.end,
            CarState::Parking(_, _, ref time_int) => time_int.end,
            CarState::IdlingAtStop(_, ref time_int) => time_int.end,
        }
    }

    pub fn time_spent_waiting(&self, now: Time) -> Duration {
        match self {
            CarState::Queued { blocked_since } | CarState::WaitingToAdvance { blocked_since } => {
                now - *blocked_since
            }
            _ => Duration::ZERO,
        }
    }
}