1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
use std::collections::{HashMap, HashSet};
use petgraph::graphmap::DiGraphMap;
use geom::{Distance, Duration, Speed};
pub use self::walking::{all_walking_costs_from, WalkingOptions};
use crate::pathfind::build_graph_for_vehicles;
pub use crate::pathfind::{driving_cost, WalkingNode};
use crate::{BuildingID, LaneID, Map, PathConstraints, PathRequest, RoadID};
mod walking;
pub fn find_scc(map: &Map, constraints: PathConstraints) -> (HashSet<LaneID>, HashSet<LaneID>) {
let mut graph = DiGraphMap::new();
for turn in map.all_turns().values() {
if constraints.can_use(map.get_l(turn.id.src), map)
&& constraints.can_use(map.get_l(turn.id.dst), map)
{
graph.add_edge(turn.id.src, turn.id.dst, 1);
}
}
let components = petgraph::algo::kosaraju_scc(&graph);
if components.is_empty() {
return (HashSet::new(), HashSet::new());
}
let largest_group: HashSet<LaneID> = components
.into_iter()
.max_by_key(|c| c.len())
.unwrap()
.into_iter()
.collect();
let disconnected = map
.all_lanes()
.iter()
.filter_map(|l| {
if constraints.can_use(l, map) && !largest_group.contains(&l.id) {
Some(l.id)
} else {
None
}
})
.collect();
(largest_group, disconnected)
}
pub fn all_vehicle_costs_from(
map: &Map,
start: BuildingID,
time_limit: Duration,
constraints: PathConstraints,
) -> HashMap<BuildingID, Duration> {
assert!(constraints != PathConstraints::Pedestrian);
let mut results = HashMap::new();
let mut bldg_to_lane = HashMap::new();
for b in map.all_buildings() {
if constraints == PathConstraints::Car {
if let Some((pos, _)) = b.driving_connection(map) {
bldg_to_lane.insert(b.id, pos.lane());
}
} else if constraints == PathConstraints::Bike {
if let Some((pos, _)) = b.biking_connection(map) {
bldg_to_lane.insert(b.id, pos.lane());
}
}
}
let max_bike_speed = Speed::miles_per_hour(10.0);
if let Some(start_lane) = bldg_to_lane.get(&start) {
let graph = build_graph_for_vehicles(map, constraints);
let cost_per_lane = petgraph::algo::dijkstra(&graph, *start_lane, None, |(_, _, turn)| {
driving_cost(
map.get_l(turn.src),
map.get_t(*turn),
constraints,
map.routing_params(),
map,
)
});
for (b, lane) in bldg_to_lane {
if let Some(meters) = cost_per_lane.get(&lane) {
let distance = Distance::meters(*meters as f64);
let duration = distance / max_bike_speed;
if duration <= time_limit {
results.insert(b, duration);
}
}
}
}
results
}
pub fn debug_vehicle_costs(req: PathRequest, map: &Map) -> Option<(f64, HashMap<RoadID, f64>)> {
if req.constraints == PathConstraints::Pedestrian {
return None;
}
let graph = build_graph_for_vehicles(map, req.constraints);
let (cost, _) = petgraph::algo::astar(
&graph,
req.start.lane(),
|l| l == req.end.lane(),
|(_, _, turn)| {
driving_cost(
map.get_l(turn.src),
map.get_t(*turn),
req.constraints,
map.routing_params(),
map,
)
},
|_| 0.0,
)?;
let lane_costs = petgraph::algo::dijkstra(&graph, req.start.lane(), None, |(_, _, turn)| {
driving_cost(
map.get_l(turn.src),
map.get_t(*turn),
req.constraints,
map.routing_params(),
map,
)
});
let mut road_costs = HashMap::new();
for (l, cost) in lane_costs {
let road_cost = road_costs.entry(map.get_l(l).parent).or_insert(cost);
*road_cost = road_cost.min(cost);
}
Some((cost, road_costs))
}