1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
use std::collections::BTreeSet;

use serde::{Deserialize, Serialize};

use abstutil::Timer;

use crate::pathfind::ch::ContractionHierarchyPathfinder;
use crate::pathfind::walking::{one_step_walking_path, walking_path_to_steps};
use crate::pathfind::{dijkstra, WalkingNode};
use crate::{
    BusRouteID, BusStopID, Intersection, LaneID, Map, Path, PathConstraints, PathRequest, Position,
    RoutingParams, TurnID, Zone,
};

/// Most of the time, prefer using the faster contraction hierarchies. But sometimes, callers can
/// explicitly opt into a slower (but preparation-free) pathfinder that just uses Dijkstra's
/// maneuever.
#[derive(Serialize, Deserialize)]
pub enum Pathfinder {
    Dijkstra,
    CH(ContractionHierarchyPathfinder),
}

impl Pathfinder {
    /// Finds a path from a start to an end for a certain type of agent. Handles requests that
    /// start or end inside access-restricted zones.
    pub fn pathfind(&self, req: PathRequest, map: &Map) -> Option<Path> {
        self.pathfind_with_params(req, map.routing_params(), map)
    }

    /// Finds a path from a start to an end for a certain type of agent. Handles requests that
    /// start or end inside access-restricted zones. May use custom routing parameters.
    pub fn pathfind_with_params(
        &self,
        req: PathRequest,
        params: &RoutingParams,
        map: &Map,
    ) -> Option<Path> {
        if req.start.lane() == req.end.lane() && req.constraints == PathConstraints::Pedestrian {
            return Some(one_step_walking_path(&req, map));
        }

        // If we start or end in a private zone, have to stitch together a smaller path with a path
        // through the main map.
        let start_r = map.get_parent(req.start.lane());
        let end_r = map.get_parent(req.end.lane());

        match (start_r.get_zone(map), end_r.get_zone(map)) {
            (Some(z1), Some(z2)) => {
                if z1 == z2 {
                    if !z1
                        .restrictions
                        .allow_through_traffic
                        .contains(req.constraints)
                    {
                        if req.constraints == PathConstraints::Pedestrian {
                            let steps =
                                walking_path_to_steps(z1.pathfind_walking(req.clone(), map)?, map);
                            return Some(Path::new(map, steps, req, Vec::new()));
                        }
                        return z1.pathfind(req, map);
                    }
                } else {
                    // TODO Handle paths going between two different zones
                    return None;
                }
            }
            (Some(zone), None) => {
                if !zone
                    .restrictions
                    .allow_through_traffic
                    .contains(req.constraints)
                {
                    // Calculate the entire path using every possible border, then take the one
                    // with the least total distance.
                    // TODO This is slow and doesn't account for the mode-specific cost.
                    let mut paths = Vec::new();
                    for i in &zone.borders {
                        if let Some(result) =
                            self.pathfind_from_zone(map.get_i(*i), req.clone(), zone, map)
                        {
                            paths.push(result);
                        }
                    }
                    return paths.into_iter().min_by_key(|p| p.total_length());
                }
            }
            (None, Some(zone)) => {
                if !zone
                    .restrictions
                    .allow_through_traffic
                    .contains(req.constraints)
                {
                    // Calculate the entire path using every possible border, then take the one
                    // with the least total distance.
                    // TODO This is slow and doesn't account for the mode-specific cost.
                    let mut paths = Vec::new();
                    for i in &zone.borders {
                        if let Some(result) =
                            self.pathfind_to_zone(map.get_i(*i), req.clone(), zone, map)
                        {
                            paths.push(result);
                        }
                    }
                    return paths.into_iter().min_by_key(|p| p.total_length());
                }
            }
            (None, None) => {}
        }

        if req.constraints == PathConstraints::Pedestrian {
            if req.start.lane() == req.end.lane() {
                return Some(one_step_walking_path(&req, map));
            }
            let steps = walking_path_to_steps(self.simple_walking_path(&req, map)?, map);
            return Some(Path::new(map, steps, req, Vec::new()));
        }
        self.simple_pathfind(&req, params, map)
    }

    pub fn pathfind_avoiding_lanes(
        &self,
        req: PathRequest,
        avoid: BTreeSet<LaneID>,
        map: &Map,
    ) -> Option<Path> {
        dijkstra::pathfind_avoiding_lanes(req, avoid, map)
    }

    // TODO Consider returning the walking-only path in the failure case, to avoid wasting work
    pub fn should_use_transit(
        &self,
        map: &Map,
        start: Position,
        end: Position,
    ) -> Option<(BusStopID, Option<BusStopID>, BusRouteID)> {
        match self {
            // TODO Implement this
            Pathfinder::Dijkstra => None,
            Pathfinder::CH(ref p) => p.should_use_transit(map, start, end),
        }
    }

    pub fn apply_edits(&mut self, map: &Map, timer: &mut Timer) {
        match self {
            Pathfinder::Dijkstra => {}
            Pathfinder::CH(ref mut p) => p.apply_edits(map, timer),
        }
    }

    // Doesn't handle zones or pedestrians
    fn simple_pathfind(
        &self,
        req: &PathRequest,
        params: &RoutingParams,
        map: &Map,
    ) -> Option<Path> {
        if params != map.routing_params() {
            // If the params differ from the ones baked into the map, the CHs won't match. This
            // should only be happening from the debug UI; be very obnoxious if we start calling it
            // from the simulation or something else.
            warn!("Pathfinding slowly for {} with custom params", req);
            return dijkstra::simple_pathfind(req, params, map);
        }

        match self {
            Pathfinder::Dijkstra => dijkstra::simple_pathfind(req, params, map),
            Pathfinder::CH(ref p) => p.simple_pathfind(req, map),
        }
    }

    fn simple_walking_path(&self, req: &PathRequest, map: &Map) -> Option<Vec<WalkingNode>> {
        match self {
            Pathfinder::Dijkstra => dijkstra::simple_walking_path(req, map),
            Pathfinder::CH(ref p) => p.simple_walking_path(req, map),
        }
    }

    fn pathfind_from_zone(
        &self,
        i: &Intersection,
        mut req: PathRequest,
        zone: &Zone,
        map: &Map,
    ) -> Option<Path> {
        // Because sidewalks aren't all immediately linked, insist on a (src, dst) combo that
        // are actually connected by a turn.
        let src_choices = i
            .get_incoming_lanes(map, req.constraints)
            .into_iter()
            .filter(|l| zone.members.contains(&map.get_l(*l).parent))
            .collect::<Vec<_>>();
        let dst_choices = i
            .get_outgoing_lanes(map, req.constraints)
            .into_iter()
            .filter(|l| !zone.members.contains(&map.get_l(*l).parent))
            .collect::<Vec<_>>();
        let (src, dst) = {
            let mut result = None;
            'OUTER: for l1 in src_choices {
                for l2 in &dst_choices {
                    if l1 != *l2
                        && map
                            .maybe_get_t(TurnID {
                                parent: i.id,
                                src: l1,
                                dst: *l2,
                            })
                            .is_some()
                    {
                        result = Some((l1, *l2));
                        break 'OUTER;
                    }
                }
            }
            result?
        };

        let interior_req = PathRequest {
            start: req.start,
            end: if map.get_l(src).dst_i == i.id {
                Position::end(src, map)
            } else {
                Position::start(src)
            },
            constraints: req.constraints,
        };
        let orig_req = req.clone();
        req.start = if map.get_l(dst).src_i == i.id {
            Position::start(dst)
        } else {
            Position::end(dst, map)
        };

        if let PathConstraints::Pedestrian = req.constraints {
            let mut interior_path = zone.pathfind_walking(interior_req, map)?;
            let main_path = if req.start.lane() == req.end.lane() {
                let mut one_step = vec![
                    WalkingNode::closest(req.start, map),
                    WalkingNode::closest(req.end, map),
                ];
                one_step.dedup();
                one_step
            } else {
                self.simple_walking_path(&req, map)?
            };
            interior_path.extend(main_path);
            let steps = walking_path_to_steps(interior_path, map);
            return Some(Path::new(map, steps, orig_req, Vec::new()));
        }

        let mut interior_path = zone.pathfind(interior_req, map)?;
        let main_path = self.simple_pathfind(&req, map.routing_params(), map)?;
        interior_path.append(main_path, map);
        interior_path.orig_req = orig_req;
        Some(interior_path)
    }

    fn pathfind_to_zone(
        &self,
        i: &Intersection,
        mut req: PathRequest,
        zone: &Zone,
        map: &Map,
    ) -> Option<Path> {
        // Because sidewalks aren't all immediately linked, insist on a (src, dst) combo that
        // are actually connected by a turn.
        let src_choices = i
            .get_incoming_lanes(map, req.constraints)
            .into_iter()
            .filter(|l| !zone.members.contains(&map.get_l(*l).parent))
            .collect::<Vec<_>>();
        let dst_choices = i
            .get_outgoing_lanes(map, req.constraints)
            .into_iter()
            .filter(|l| zone.members.contains(&map.get_l(*l).parent))
            .collect::<Vec<_>>();
        let (src, dst) = {
            let mut result = None;
            'OUTER: for l1 in src_choices {
                for l2 in &dst_choices {
                    if l1 != *l2
                        && map
                            .maybe_get_t(TurnID {
                                parent: i.id,
                                src: l1,
                                dst: *l2,
                            })
                            .is_some()
                    {
                        result = Some((l1, *l2));
                        break 'OUTER;
                    }
                }
            }
            result?
        };

        let interior_req = PathRequest {
            start: if map.get_l(dst).src_i == i.id {
                Position::start(dst)
            } else {
                Position::end(dst, map)
            },
            end: req.end,
            constraints: req.constraints,
        };
        let orig_req = req.clone();
        req.end = if map.get_l(src).dst_i == i.id {
            Position::end(src, map)
        } else {
            Position::start(src)
        };

        if let PathConstraints::Pedestrian = req.constraints {
            let interior_path = zone.pathfind_walking(interior_req, map)?;
            let mut main_path = if req.start.lane() == req.end.lane() {
                let mut one_step = vec![
                    WalkingNode::closest(req.start, map),
                    WalkingNode::closest(req.end, map),
                ];
                one_step.dedup();
                one_step
            } else {
                self.simple_walking_path(&req, map)?
            };

            main_path.extend(interior_path);
            let steps = walking_path_to_steps(main_path, map);
            return Some(Path::new(map, steps, orig_req, Vec::new()));
        }

        let interior_path = zone.pathfind(interior_req, map)?;
        let mut main_path = self.simple_pathfind(&req, map.routing_params(), map)?;
        main_path.append(interior_path, map);
        main_path.orig_req = orig_req;
        Some(main_path)
    }
}