1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
//! Structures related to the new road-based pathfinding
//! (https://github.com/a-b-street/abstreet/issues/555) live here. When the transition is done,
//! things here will probably move into pathfind/mod.rs.

use anyhow::Result;
use serde::{Deserialize, Serialize};

use geom::Duration;

use crate::pathfind::uber_turns::UberTurnV2;
use crate::{
    DirectedRoadID, IntersectionID, LaneID, Map, MovementID, Path, PathConstraints, PathRequest,
    PathStep, RoadID, TurnID, UberTurn,
};

/// One step along a path.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum PathStepV2 {
    /// Original direction
    Along(DirectedRoadID),
    /// Opposite direction, sidewalks only
    Contraflow(DirectedRoadID),
    Movement(MovementID),
    ContraflowMovement(MovementID),
}

/// A path between two endpoints for a particular mode. This representation is immutable and doesn't
/// prescribe specific lanes and turns to follow.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct PathV2 {
    steps: Vec<PathStepV2>,
    // TODO There will be a PathRequestV2, but I'm not sure how it'll change yet.
    req: PathRequest,
    cost: Duration,
    // TODO Temporarily we'll keep plumbing these along for path_v2_to_v1 to work, but we'll
    // probably just discover uber-turns lazily at the simulation layer instead.
    uber_turns: Vec<UberTurnV2>,
}

impl PathV2 {
    pub(crate) fn new(
        steps: Vec<PathStepV2>,
        req: PathRequest,
        cost: Duration,
        uber_turns: Vec<UberTurnV2>,
    ) -> PathV2 {
        // TODO Port validate_continuity and validate_restrictions?
        PathV2 {
            steps,
            req,
            cost,
            uber_turns,
        }
    }

    /// Vehicle implementations often just calculate the sequence of roads. Turn that into
    /// PathStepV2 here.
    pub fn from_roads(
        mut roads: Vec<DirectedRoadID>,
        req: PathRequest,
        cost: Duration,
        uber_turns: Vec<UberTurnV2>,
        map: &Map,
    ) -> PathV2 {
        let mut steps = Vec::new();
        for pair in roads.windows(2) {
            steps.push(PathStepV2::Along(pair[0]));
            steps.push(PathStepV2::Movement(MovementID {
                from: pair[0],
                to: pair[1],
                parent: pair[0].dst_i(map),
                crosswalk: false,
            }));
        }
        steps.push(PathStepV2::Along(roads.pop().unwrap()));
        PathV2::new(steps, req, cost, uber_turns)
    }

    /// The original PathRequest used to produce this path.
    pub fn get_req(&self) -> &PathRequest {
        &self.req
    }

    /// All steps in this path.
    pub fn get_steps(&self) -> &Vec<PathStepV2> {
        &self.steps
    }

    /// The time needed to perform this path. This time is not a lower bound; physically following
    /// the path might be faster. This time incorporates costs like using sub-optimal lanes or
    /// taking difficult turns.
    pub fn get_cost(&self) -> Duration {
        self.cost
    }

    /// Transform a sequence of roads representing a path into the current lane-based path, by
    /// picking particular lanes and turns to use.
    pub fn into_v1(mut self, map: &Map) -> Result<Path> {
        if self.req.constraints == PathConstraints::Pedestrian {
            return self.into_v1_walking(map);
        }

        // If we had two possible start positions, figure out which one we wound up using
        let orig_start_lane = self.req.start.lane();
        if let Some((pos, _)) = self.req.alt_start {
            if let PathStepV2::Along(dr) = self.steps[0] {
                if map.get_l(self.req.start.lane()).get_directed_parent() == dr {
                    // We used the original side, fine. No need to preserve this.
                } else {
                    assert_eq!(map.get_l(pos.lane()).get_directed_parent(), dr);
                    self.req.start = pos;
                }
                self.req.alt_start = None;
            } else {
                unreachable!()
            }
        }

        // This is a somewhat brute-force method: run Dijkstra's algorithm on a graph of lanes and
        // turns, but only build the graph along the path of roads we've already found. This handles
        // arbitrary lookahead needed, and forces use of the original start/end lanes requested.
        let mut graph = petgraph::graphmap::DiGraphMap::new();
        for step in &self.steps {
            if let PathStepV2::Movement(mvmnt) = step {
                for src in mvmnt.from.lanes(self.req.constraints, map) {
                    for dst in mvmnt.to.lanes(self.req.constraints, map) {
                        let turn = TurnID {
                            parent: map.get_l(src).dst_i,
                            src,
                            dst,
                        };
                        if map.maybe_get_t(turn).is_some() {
                            graph.add_edge(src, dst, turn);
                        }
                    }
                }
            }
        }

        // The v2 path might immediately require a turn that's only available from some lanes. If
        // the req.start lane can't make that turn, then producing the v1 path would fail. So let's
        // allow starting from any lane on the same side of the road. Since petgraph can only start
        // from a single node and since we want to prefer the originally requested lane anyway,
        // create a virtual start node and connect it to all possible starting lanes.
        let virtual_start_node = LaneID {
            road: RoadID(map.all_roads().len()),
            offset: 0,
        };
        let start_lane = self.req.start.lane();
        let start_road = map.get_parent(start_lane);
        let start_lane_idx = start_lane.offset as isize;
        for l in map
            .get_l(start_lane)
            .get_directed_parent()
            .lanes(self.req.constraints, map)
        {
            // Heavily penalize starting from something other than the originally requested lane.
            // At the simulation layer, we may need to block intermediate lanes to exit a driveway,
            // so reflect that cost here. The high cost should only be worth it when the v2 path
            // requires that up-front turn from certain lanes.
            //
            // TODO This is only valid if we were leaving from a driveway! This is making some
            // buses warp after making a stop.
            let idx_dist = (start_lane_idx - (l.offset as isize)).abs();
            let cost = 100 * idx_dist as usize;
            let fake_turn = TurnID {
                // Just encode the cost here for convenience
                parent: IntersectionID(cost),
                src: virtual_start_node,
                dst: virtual_start_node,
            };
            graph.add_edge(virtual_start_node, l, fake_turn);
        }

        match petgraph::algo::astar(
            &graph,
            virtual_start_node,
            |l| l == self.req.end.lane(),
            |(_, _, t)| {
                if t.src == virtual_start_node {
                    return t.parent.0;
                }

                // Normally opportunistic lane-changing adjusts the path live, but that doesn't work
                // near uber-turns. So still use some of the penalties here.
                let (lt, lc, slow_lane) = map.get_t(*t).penalty(self.req.constraints, map);
                let mut extra_penalty = lt + lc;
                if self.req.constraints == PathConstraints::Bike {
                    extra_penalty += slow_lane;
                }
                // Always treat every lane/turn as at least cost 1; otherwise A* can't understand
                // that a final path with 10 steps costs more than one with 5. The
                // road-based pathfinding has already chosen the overall route; when
                // we're picking individual lanes, the length of each lane along one
                // road is going to be about the same.
                let base = 1;
                base + extra_penalty
            },
            |_| 0,
        ) {
            Some((_, path)) => {
                let mut steps = Vec::new();
                // Skip the first node; it's always virtual_start_node
                assert_eq!(path[0], virtual_start_node);
                for pair in path.windows(2) {
                    if pair[0] == virtual_start_node {
                        continue;
                    }

                    steps.push(PathStep::Lane(pair[0]));
                    // We don't need to look for this turn in the map; we know it exists.
                    steps.push(PathStep::Turn(TurnID {
                        parent: map.get_l(pair[0]).dst_i,
                        src: pair[0],
                        dst: pair[1],
                    }));
                }
                steps.push(PathStep::Lane(self.req.end.lane()));
                let mut blocked_starts = Vec::new();
                if steps[0] != PathStep::Lane(orig_start_lane) {
                    let actual_start = match steps[0] {
                        PathStep::Lane(l) => l,
                        _ => unreachable!(),
                    };
                    blocked_starts.push(orig_start_lane);
                    blocked_starts
                        .extend(start_road.get_lanes_between(orig_start_lane, actual_start));
                    // Sometimes a no-op for exiting off-side
                    self.req.start = self.req.start.equiv_pos(actual_start, map);
                }
                let uber_turns = find_uber_turns(&steps, map, self.uber_turns);
                Ok(Path::new(map, steps, self.req, uber_turns, blocked_starts))
            }
            None => bail!(
                "Can't transform a road-based path to a lane-based path for {}",
                self.req
            ),
        }
    }

    fn into_v1_walking(self, map: &Map) -> Result<Path> {
        let mut steps = Vec::new();
        for step in self.steps {
            steps.push(match step {
                PathStepV2::Along(r) => PathStep::Lane(r.must_get_sidewalk(map)),
                PathStepV2::Contraflow(r) => PathStep::ContraflowLane(r.must_get_sidewalk(map)),
                PathStepV2::Movement(mvmnt) => PathStep::Turn(TurnID {
                    src: mvmnt.from.must_get_sidewalk(map),
                    dst: mvmnt.to.must_get_sidewalk(map),
                    parent: mvmnt.parent,
                }),
                PathStepV2::ContraflowMovement(mvmnt) => PathStep::ContraflowTurn(TurnID {
                    src: mvmnt.from.must_get_sidewalk(map),
                    dst: mvmnt.to.must_get_sidewalk(map),
                    parent: mvmnt.parent,
                }),
            });
        }
        Ok(Path::new(map, steps, self.req, Vec::new(), Vec::new()))
    }

    pub fn crosses_road(&self, r: RoadID) -> bool {
        self.steps.iter().any(|step| match step {
            PathStepV2::Along(dr) => dr.road == r,
            _ => false,
        })
    }
}

fn find_uber_turns(
    steps: &[PathStep],
    map: &Map,
    mut uber_turns_v2: Vec<UberTurnV2>,
) -> Vec<UberTurn> {
    // Pathfinding v1 needs to know the uber turns that the path crosses, for the simulation layer.
    // Since we now construct the path in two stages, it's easiest to just reconstruct the uber
    // turns after building the lane-based path.

    let num_uts = uber_turns_v2.len();
    let mut result = Vec::new();
    let mut current_ut = Vec::new();
    for step in steps {
        // Optimization
        if uber_turns_v2.is_empty() {
            break;
        }

        if let PathStep::Turn(t) = step {
            if current_ut.is_empty()
                && uber_turns_v2[0].path[0].from == map.get_l(t.src).get_directed_parent()
            {
                current_ut.push(*t);
            }

            if !current_ut.is_empty() {
                if current_ut.last() != Some(t) {
                    current_ut.push(*t);
                }
                if uber_turns_v2[0].path[0].to == map.get_l(t.dst).get_directed_parent() {
                    result.push(UberTurn {
                        path: current_ut.drain(..).collect(),
                    });
                    uber_turns_v2.remove(0);
                }
            }
        }
    }
    assert!(current_ut.is_empty());
    assert_eq!(num_uts, result.len());
    result
}