1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
use std::collections::HashMap;
use std::fs::File;

use anyhow::Result;
use rand::SeedableRng;
use rand_xorshift::XorShiftRng;
use serde::Deserialize;

use abstio::path_shared_input;
use abstutil::{prettyprint_usize, Timer};
use geom::{GPSBounds, LonLat, Polygon, Ring};
use map_model::raw::RawMap;
use map_model::Map;
use popdat::od::DesireLine;
use sim::{Scenario, TripEndpoint, TripMode};

use crate::configuration::ImporterConfiguration;
use crate::utils::download;

pub async fn import_collision_data(
    map: &RawMap,
    config: &ImporterConfiguration,
    timer: &mut Timer<'_>,
) {
    download(
        config,
        path_shared_input("Road Safety Data - Accidents 2019.csv"),
        "http://data.dft.gov.uk.s3.amazonaws.com/road-accidents-safety-data/DfTRoadSafety_Accidents_2019.zip").await;

    // Always do this, it's idempotent and fast
    let shapes = kml::ExtraShapes::load_csv(
        path_shared_input("Road Safety Data - Accidents 2019.csv"),
        &map.gps_bounds,
        timer,
    )
    .unwrap();
    let collisions = collisions::import_stats19(
        shapes,
        "http://data.dft.gov.uk.s3.amazonaws.com/road-accidents-safety-data/DfTRoadSafety_Accidents_2019.zip");
    abstio::write_binary(
        map.get_city_name().input_path("collisions.bin"),
        &collisions,
    );
}

pub async fn generate_scenario(
    map: &Map,
    config: &ImporterConfiguration,
    timer: &mut Timer<'_>,
) -> Result<()> {
    timer.start("prepare input");
    download(
        config,
        path_shared_input("wu03ew_v2.csv"),
        "https://s3-eu-west-1.amazonaws.com/statistics.digitalresources.jisc.ac.uk/dkan/files/FLOW/wu03ew_v2/wu03ew_v2.csv").await;
    // https://mapit.mysociety.org/area/45350.html (for geocode) E02004277 is an example place to
    // debug where these zones are.
    download(
        config,
        path_shared_input("zones_core.geojson"),
        "https://github.com/cyipt/actdev/releases/download/0.1.13/zones_core.geojson",
    )
    .await;

    let desire_lines = parse_desire_lines(path_shared_input("wu03ew_v2.csv"))?;
    let zones = parse_zones(
        map.get_gps_bounds(),
        path_shared_input("zones_core.geojson"),
    )?;
    timer.stop("prepare input");

    timer.start("disaggregate");
    // Could plumb this in as a flag to the importer, but it's not critical.
    let mut rng = XorShiftRng::seed_from_u64(42);
    let mut scenario = Scenario::empty(map, "background");
    // Include all buses/trains
    scenario.only_seed_buses = None;
    scenario.people = popdat::od::disaggregate(
        map,
        zones,
        desire_lines,
        popdat::od::Options::default(),
        &mut rng,
        timer,
    );
    // Some zones have very few buildings, and people wind up with a home and workplace that're the
    // same!
    scenario = scenario.remove_weird_schedules();
    info!(
        "Generated background traffic scenario with {} people",
        prettyprint_usize(scenario.people.len())
    );
    timer.stop("disaggregate");

    // Does this map belong to the actdev project?
    match load_study_area(map) {
        Ok(study_area) => {
            // Remove people from the scenario we just generated that live in the study area. The
            // data imported using importer/actdev_scenarios.sh already covers them.
            let before = scenario.people.len();
            scenario.people.retain(|p| match p.origin {
                TripEndpoint::Bldg(b) => !study_area.contains_pt(map.get_b(b).polygon.center()),
                _ => true,
            });
            info!(
                "Removed {} people from the background scenario that live in the study area",
                prettyprint_usize(before - scenario.people.len())
            );

            // Create two scenarios, merging the background traffic with the base/active scenarios.
            let mut base: Scenario = abstio::maybe_read_binary::<Scenario>(
                abstio::path_scenario(map.get_name(), "base"),
                timer,
            )?;
            base.people.extend(scenario.people.clone());
            base.scenario_name = "base_with_bg".to_string();
            base.save();

            let mut go_active: Scenario = abstio::maybe_read_binary(
                abstio::path_scenario(map.get_name(), "go_active"),
                timer,
            )?;
            go_active.people.extend(scenario.people);
            go_active.scenario_name = "go_active_with_bg".to_string();
            go_active.save();
        }
        Err(err) => {
            // We're a "normal" city -- just save the background traffic.
            info!("{} has no study area: {}", map.get_name().describe(), err);
            scenario.save();
        }
    }

    Ok(())
}

fn parse_desire_lines(path: String) -> Result<Vec<DesireLine>> {
    let mut output = Vec::new();
    for rec in csv::Reader::from_reader(File::open(path)?).deserialize() {
        let rec: Record = rec?;
        for (mode, number_commuters) in vec![
            (TripMode::Drive, rec.num_drivers),
            (TripMode::Bike, rec.num_bikers),
            (TripMode::Walk, rec.num_pedestrians),
            (
                TripMode::Transit,
                rec.num_transit1 + rec.num_transit2 + rec.num_transit3,
            ),
        ] {
            if number_commuters > 0 {
                output.push(DesireLine {
                    home_zone: rec.home_zone.clone(),
                    work_zone: rec.work_zone.clone(),
                    mode,
                    number_commuters,
                });
            }
        }
    }
    Ok(output)
}

// An entry in wu03ew_v2.csv. For now, ignores people who work from home, take a taxi, motorcycle,
// are a passenger in a car, or use "another method of travel".
#[derive(Debug, Deserialize)]
struct Record {
    #[serde(rename = "Area of residence")]
    home_zone: String,
    #[serde(rename = "Area of workplace")]
    work_zone: String,
    #[serde(rename = "Underground, metro, light rail, tram")]
    num_transit1: usize,
    #[serde(rename = "Train")]
    num_transit2: usize,
    #[serde(rename = "Bus, minibus or coach")]
    num_transit3: usize,
    #[serde(rename = "Driving a car or van")]
    num_drivers: usize,
    #[serde(rename = "Bicycle")]
    num_bikers: usize,
    #[serde(rename = "On foot")]
    num_pedestrians: usize,
}

// Transforms all zones into the map's coordinate space, no matter how far out-of-bounds they are.
fn parse_zones(gps_bounds: &GPSBounds, path: String) -> Result<HashMap<String, Polygon>> {
    let mut zones = HashMap::new();

    let bytes = abstio::slurp_file(path)?;
    let raw_string = std::str::from_utf8(&bytes)?;
    let geojson = raw_string.parse::<geojson::GeoJson>()?;

    if let geojson::GeoJson::FeatureCollection(collection) = geojson {
        for feature in collection.features {
            let zone = feature
                .property("geo_code")
                .and_then(|x| x.as_str())
                .ok_or_else(|| anyhow!("no geo_code"))?
                .to_string();
            if let Some(geom) = feature.geometry {
                if let geojson::Value::MultiPolygon(mut raw_polygons) = geom.value {
                    if raw_polygons.len() != 1 {
                        // We'll just one of them arbitrarily
                        warn!(
                            "Zone {} has a multipolygon with {} members",
                            zone,
                            raw_polygons.len()
                        );
                    }
                    match parse_polygon(raw_polygons.pop().unwrap(), gps_bounds) {
                        Ok(polygon) => {
                            zones.insert(zone, polygon);
                        }
                        Err(err) => {
                            warn!("Zone {} has bad geometry: {}", zone, err);
                        }
                    }
                }
            }
        }
    }

    Ok(zones)
}

// TODO Clean up the exploding number of geojson readers everywhere.
fn parse_polygon(input: Vec<Vec<Vec<f64>>>, gps_bounds: &GPSBounds) -> Result<Polygon> {
    let mut rings = Vec::new();
    for ring in input {
        let gps_pts: Vec<LonLat> = ring
            .into_iter()
            .map(|pt| LonLat::new(pt[0], pt[1]))
            .collect();
        let pts = gps_bounds.convert(&gps_pts);
        rings.push(Ring::new(pts)?);
    }
    Ok(Polygon::from_rings(rings))
}

fn load_study_area(map: &Map) -> Result<Polygon> {
    let bytes = abstio::slurp_file(abstio::path(format!(
        "system/study_areas/{}.geojson",
        map.get_name().city.city.replace("_", "-")
    )))?;
    let raw_string = std::str::from_utf8(&bytes)?;
    let geojson = raw_string.parse::<geojson::GeoJson>()?;

    if let geojson::GeoJson::FeatureCollection(collection) = geojson {
        for feature in collection.features {
            if let Some(geom) = feature.geometry {
                if let geojson::Value::Polygon(raw_pts) = geom.value {
                    return parse_polygon(raw_pts, map.get_gps_bounds());
                }
            }
        }
    }
    bail!("no study area");
}