1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
use std::collections::{HashMap, HashSet};

use abstutil::MultiMap;
use connectivity::Spot;
use geom::Duration;
use map_gui::tools::draw_isochrone;
use map_model::{
    connectivity, AmenityType, BuildingID, BuildingType, IntersectionID, LaneType, Map, Path,
    PathConstraints, PathRequest,
};
use widgetry::{Color, Drawable, EventCtx};

use crate::App;

/// Represents the area reachable from a single building.
pub struct Isochrone {
    /// The center of the isochrone (can be multiple points)
    pub start: Vec<BuildingID>,
    /// The options used to generate this isochrone
    pub options: Options,
    /// Colored polygon contours, uploaded to the GPU and ready for drawing
    pub draw: Drawable,
    /// Thresholds used to draw the isochrone
    pub thresholds: Vec<f64>,
    /// Colors used to draw the isochrone
    pub colors: Vec<Color>,
    /// How far away is each building from the start?
    pub time_to_reach_building: HashMap<BuildingID, Duration>,
    /// Per category of amenity, what buildings have that?
    pub amenities_reachable: MultiMap<AmenityType, BuildingID>,
    /// How many people live in the returned area, according to estimates included in the map (from
    /// city-specific parcel data, guesses from census, or a guess based on OSM tags)
    pub population: usize,
    /// How many sreet parking spots are on the same road as any buildings returned.
    pub onstreet_parking_spots: usize,
}

/// The constraints on how we're moving.
#[derive(Clone)]
pub enum Options {
    Walking(connectivity::WalkingOptions),
    Biking,
}

impl Options {
    /// Calculate the quickest time to reach buildings across the map from any of the starting
    /// points, subject to the walking/biking settings configured in these Options.
    pub fn times_from(self, map: &Map, starts: Vec<Spot>) -> HashMap<BuildingID, Duration> {
        match self {
            Options::Walking(opts) => {
                connectivity::all_walking_costs_from(map, starts, Duration::minutes(15), opts)
            }
            Options::Biking => connectivity::all_vehicle_costs_from(
                map,
                starts,
                Duration::minutes(15),
                PathConstraints::Bike,
            ),
        }
    }
}

impl Isochrone {
    pub fn new(
        ctx: &mut EventCtx,
        app: &App,
        start: Vec<BuildingID>,
        options: Options,
    ) -> Isochrone {
        let spot_starts = start.iter().map(|b_id| Spot::Building(*b_id)).collect();
        let time_to_reach_building = options.clone().times_from(&app.map, spot_starts);

        let mut amenities_reachable = MultiMap::new();
        let mut population = 0;
        let mut all_roads = HashSet::new();
        for b in time_to_reach_building.keys() {
            let bldg = app.map.get_b(*b);
            for amenity in &bldg.amenities {
                if let Some(category) = AmenityType::categorize(&amenity.amenity_type) {
                    amenities_reachable.insert(category, bldg.id);
                }
            }
            match bldg.bldg_type {
                BuildingType::Residential { num_residents, .. }
                | BuildingType::ResidentialCommercial(num_residents, _) => {
                    population += num_residents;
                }
                _ => {}
            }
            all_roads.insert(app.map.get_l(bldg.sidewalk_pos.lane()).parent);
        }

        let mut onstreet_parking_spots = 0;
        for r in all_roads {
            let r = app.map.get_r(r);
            for (l, _, lt) in r.lanes_ltr() {
                if lt == LaneType::Parking {
                    onstreet_parking_spots +=
                        app.map.get_l(l).number_parking_spots(app.map.get_config());
                }
            }
        }

        // Generate polygons covering the contour line where the cost in the grid crosses these
        // threshold values.
        let thresholds = vec![
            0.1,
            Duration::minutes(5).inner_seconds(),
            Duration::minutes(10).inner_seconds(),
            Duration::minutes(15).inner_seconds(),
        ];

        // And color the polygon for each threshold
        let colors = vec![
            Color::GREEN.alpha(0.5),
            Color::ORANGE.alpha(0.5),
            Color::RED.alpha(0.5),
        ];

        let mut i = Isochrone {
            start,
            options,
            draw: Drawable::empty(ctx),
            thresholds,
            colors,
            time_to_reach_building,
            amenities_reachable,
            population,
            onstreet_parking_spots,
        };

        i.draw = draw_isochrone(
            &app.map,
            &i.time_to_reach_building,
            &i.thresholds,
            &i.colors,
        )
        .upload(ctx);
        i
    }

    pub fn path_to(&self, map: &Map, to: BuildingID) -> Option<Path> {
        // Don't draw paths to places far away
        if !self.time_to_reach_building.contains_key(&to) {
            return None;
        }

        let constraints = match self.options {
            Options::Walking(_) => PathConstraints::Pedestrian,
            Options::Biking => PathConstraints::Bike,
        };

        let all_paths = self.start.iter().map(|b_id| {
            map.pathfind(PathRequest::between_buildings(map, *b_id, to, constraints).unwrap())
                .ok()
                .unwrap()
        });

        all_paths.min_by_key(|path| path.total_length())
    }
}

/// Represents the area reachable from all intersections on the map border
pub struct BorderIsochrone {
    /// The center of the isochrone (can be multiple points)
    pub start: Vec<IntersectionID>,
    /// The options used to generate this isochrone
    pub options: Options,
    /// Colored polygon contours, uploaded to the GPU and ready for drawing
    pub draw: Drawable,
    /// Thresholds used to draw the isochrone
    pub thresholds: Vec<f64>,
    /// Colors used to draw the isochrone
    pub colors: Vec<Color>,
    /// How far away is each building from the start?
    pub time_to_reach_building: HashMap<BuildingID, Duration>,
}

impl BorderIsochrone {
    pub fn new(
        ctx: &mut EventCtx,
        app: &App,
        start: Vec<IntersectionID>,
        options: Options,
    ) -> BorderIsochrone {
        let spot_starts = start.iter().map(|i_id| Spot::Border(*i_id)).collect();
        let time_to_reach_building = options.clone().times_from(&app.map, spot_starts);

        // Generate a single polygon showing 15 minutes from the border
        let thresholds = vec![0.1, Duration::minutes(15).inner_seconds()];

        // Use one color for the entire polygon
        let colors = vec![Color::rgb(0, 0, 0).alpha(0.3)];

        let mut i = BorderIsochrone {
            start,
            options,
            draw: Drawable::empty(ctx),
            thresholds,
            colors,
            time_to_reach_building,
        };

        i.draw = draw_isochrone(
            &app.map,
            &i.time_to_reach_building,
            &i.thresholds,
            &i.colors,
        )
        .upload(ctx);
        i
    }
}