1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet};

use serde::{Deserialize, Serialize};

use abstutil::{deserialize_btreemap, prettyprint_usize, serialize_btreemap, FixedMap};
use geom::{Duration, Time};
use map_model::{
    ControlStopSign, ControlTrafficSignal, Intersection, IntersectionID, LaneID, Map, StageType,
    Traversable, TurnID, TurnPriority, TurnType, UberTurn,
};

use crate::mechanics::car::{Car, CarState};
use crate::mechanics::Queue;
use crate::{
    AgentID, AlertLocation, CarID, Command, DelayCause, Event, Scheduler, SimOptions, Speed,
};

const WAIT_AT_STOP_SIGN: Duration = Duration::const_seconds(0.5);
const WAIT_BEFORE_YIELD_AT_TRAFFIC_SIGNAL: Duration = Duration::const_seconds(0.2);

/// Manages conflicts at intersections. When an agent has reached the end of a lane, they call
/// maybe_start_turn to make a Request. Based on the intersection type (stop sign, traffic signal,
/// or a "freeform policy"), the Request gets queued or immediately accepted. When agents finish
/// turns or when some time passes (for traffic signals), the intersection also gets a chance to
/// react, maybe granting one of the pending requests.
///
/// Most of the complexity comes from attempting to workaround
/// <https://a-b-street.github.io/docs/tech/trafficsim/gridlock.html>.
#[derive(Serialize, Deserialize, Clone)]
pub(crate) struct IntersectionSimState {
    state: BTreeMap<IntersectionID, State>,
    use_freeform_policy_everywhere: bool,
    dont_block_the_box: bool,
    break_turn_conflict_cycles: bool,
    handle_uber_turns: bool,
    disable_turn_conflicts: bool,
    // (x, y) means x is blocked by y. It's a many-to-many relationship. TODO Better data
    // structure.
    blocked_by: BTreeSet<(CarID, CarID)>,
    events: Vec<Event>,

    // Count how many calls to maybe_start_turn there are aside from the initial call. Break down
    // failures by those not allowed by the current intersection state vs those blocked by a
    // vehicle in the way in the target queue.
    total_repeat_requests: usize,
    not_allowed_requests: usize,
    blocked_by_someone_requests: usize,
}

#[derive(Clone, Debug, Serialize, Deserialize)]
struct State {
    id: IntersectionID,
    // The in-progress turns which any potential new turns must not conflict with
    accepted: BTreeSet<Request>,
    // Track when a request is first made and if it's "urgent" (because the agent is overflowing a
    // short queue)
    #[serde(
        serialize_with = "serialize_btreemap",
        deserialize_with = "deserialize_btreemap"
    )]
    waiting: BTreeMap<Request, (Time, bool)>,
    // When a vehicle begins an uber-turn, reserve the future turns to ensure they're able to
    // complete the entire sequence. This is especially necessary since groups of traffic signals
    // are not yet configured as one.
    reserved: BTreeSet<Request>,
    // In some cases, a turn completing at one intersection may affect agents waiting to start an
    // uber-turn at nearby intersections.
    uber_turn_neighbors: Vec<IntersectionID>,

    // This is keyed by the lane the agent is approaching from. Note that:
    // 1) the turn in the request may change by the time the leader arrives -- they might decide to
    //    aim for a different destination lane
    // 2) If another agent pulls out on a driveway before this agent, they become the leader and
    //    overwrite this one
    #[serde(
        serialize_with = "serialize_btreemap",
        deserialize_with = "deserialize_btreemap"
    )]
    leader_eta: BTreeMap<LaneID, (Request, Time)>,

    signal: Option<SignalState>,
}

#[derive(Clone, Debug, Serialize, Deserialize)]
struct SignalState {
    // The current stage of the signal, zero based
    current_stage: usize,
    // The time when the signal is checked for advancing
    stage_ends_at: Time,
    // The number of times a variable signal has been extended during the current stage.
    extensions_count: usize,
}

#[derive(PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize, Clone, Debug)]
struct Request {
    agent: AgentID,
    turn: TurnID,
}

// Mutations
impl IntersectionSimState {
    pub fn new(map: &Map, scheduler: &mut Scheduler, opts: &SimOptions) -> IntersectionSimState {
        let mut sim = IntersectionSimState {
            state: BTreeMap::new(),
            use_freeform_policy_everywhere: opts.use_freeform_policy_everywhere,
            dont_block_the_box: !opts.allow_block_the_box,
            break_turn_conflict_cycles: !opts.dont_break_turn_conflict_cycles,
            handle_uber_turns: !opts.dont_handle_uber_turns,
            disable_turn_conflicts: opts.disable_turn_conflicts,
            blocked_by: BTreeSet::new(),
            events: Vec::new(),

            total_repeat_requests: 0,
            not_allowed_requests: 0,
            blocked_by_someone_requests: 0,
        };
        if sim.disable_turn_conflicts {
            sim.use_freeform_policy_everywhere = true;
        }

        for i in map.all_intersections() {
            let mut state = State {
                id: i.id,
                accepted: BTreeSet::new(),
                waiting: BTreeMap::new(),
                reserved: BTreeSet::new(),
                uber_turn_neighbors: Vec::new(),
                signal: None,
                leader_eta: BTreeMap::new(),
            };
            if i.is_traffic_signal() {
                state.signal = Some(SignalState::new(i.id, Time::START_OF_DAY, map, scheduler));
            }
            if let Some(mut set) = map_model::IntersectionCluster::autodetect(i.id, map) {
                set.remove(&i.id);
                state.uber_turn_neighbors.extend(set);
            }
            sim.state.insert(i.id, state);
        }
        sim
    }

    pub fn turn_finished(
        &mut self,
        now: Time,
        agent: AgentID,
        turn: TurnID,
        scheduler: &mut Scheduler,
        map: &Map,
        handling_live_edits: bool,
    ) {
        let state = self.state.get_mut(&turn.parent).unwrap();
        assert!(state.accepted.remove(&Request { agent, turn }));

        state.reserved.remove(&Request { agent, turn });
        if !handling_live_edits && map.get_t(turn).turn_type != TurnType::SharedSidewalkCorner {
            self.wakeup_waiting(now, turn.parent, scheduler, map);
        }
        if self.break_turn_conflict_cycles {
            if let AgentID::Car(car) = agent {
                self.blocked_by.retain(|(_, c)| *c != car);
            }
        }

        // If this intersection has uber-turns going through it, then we may need to wake up agents
        // with a reserved uber-turn that're waiting at nearby intersections. They may have
        // reserved their sequence of turns but then gotten stuck by somebody filling up a queue a
        // few steps away.
        for id in &self.state[&turn.parent].uber_turn_neighbors {
            self.wakeup_waiting(now, *id, scheduler, map);
        }
    }

    /// For deleting cars
    pub fn cancel_request(&mut self, agent: AgentID, turn: TurnID) {
        let state = self.state.get_mut(&turn.parent).unwrap();
        state.waiting.remove(&Request { agent, turn });
        if self.break_turn_conflict_cycles {
            if let AgentID::Car(car) = agent {
                self.blocked_by.retain(|(c1, c2)| *c1 != car && *c2 != car);
            }
        }
    }

    pub fn space_freed(
        &mut self,
        now: Time,
        i: IntersectionID,
        scheduler: &mut Scheduler,
        map: &Map,
    ) {
        self.wakeup_waiting(now, i, scheduler, map);
    }

    /// Vanished at border, stopped biking, etc -- a vehicle disappeared, and didn't have one last
    /// turn.
    pub fn vehicle_gone(&mut self, car: CarID) {
        self.blocked_by.retain(|(c1, c2)| *c1 != car && *c2 != car);
    }

    pub fn agent_deleted_mid_turn(&mut self, agent: AgentID, turn: TurnID) {
        let state = self.state.get_mut(&turn.parent).unwrap();
        assert!(state.accepted.remove(&Request { agent, turn }));

        // This agent might have a few more nearby turns reserved, because they're part of an
        // uber-turn. It's a blunt response to just clear them all out, but it should be correct.
        for state in self.state.values_mut() {
            state.reserved.retain(|req| req.agent != agent);
        }
    }

    fn wakeup_waiting(&self, now: Time, i: IntersectionID, scheduler: &mut Scheduler, map: &Map) {
        let mut all: Vec<(Request, Time, bool)> = self.state[&i]
            .waiting
            .iter()
            .map(|(r, (t, urgent))| (r.clone(), *t, *urgent))
            .collect();
        // Sort by waiting time, so things like stop signs actually are first-come, first-served.
        // But with an override: if somebody is currently on a queue that's overflowing, they're
        // very likely to be part of a cycle causing gridlock. Let them go first.
        all.sort_by_key(|(_, t, urgent)| (!*urgent, *t));

        // Wake up Priority turns before Yield turns. Don't wake up Banned turns at all. This makes
        // sure priority vehicles should get the head-start, without blocking yield vehicles
        // unnecessarily.
        let mut protected = Vec::new();
        let mut yielding = Vec::new();

        if self.use_freeform_policy_everywhere {
            for (req, _, _) in all {
                protected.push(req);
            }
        } else if let Some(signal) = map.maybe_get_traffic_signal(i) {
            let current_stage = self.state[&i].signal.as_ref().unwrap().current_stage;
            let stage = &signal.stages[current_stage];
            let reserved = &self.state[&i].reserved;
            let i = map.get_i(i);
            for (req, _, _) in all {
                match stage.get_priority_of_turn(req.turn, i) {
                    TurnPriority::Protected => {
                        protected.push(req);
                    }
                    TurnPriority::Yield => {
                        yielding.push(req);
                    }
                    // No need to wake up unless it has reserved
                    TurnPriority::Banned => {
                        if reserved.contains(&req) {
                            protected.push(req);
                        }
                    }
                }
            }
        } else if let Some(sign) = map.maybe_get_stop_sign(i) {
            for (req, _, _) in all {
                match sign.get_priority(req.turn, map) {
                    TurnPriority::Protected => {
                        protected.push(req);
                    }
                    TurnPriority::Yield => {
                        yielding.push(req);
                    }
                    TurnPriority::Banned => unreachable!(),
                }
            }
        } else {
            // This could either be a border intersection or an intersection that was just closed
            // in the middle of simulation. In either case, there shouldn't be any other turns at
            // it.
            assert!(protected.is_empty());
            assert!(yielding.is_empty());
        };
        protected.extend(yielding);

        // We now have all the requests in the order that we want to wake them up. The scheduler
        // arbitrarily (but deterministically) orders commands with the same time, so preserve the
        // ordering by adding little epsilons.
        let mut delay = Duration::ZERO;
        for req in protected {
            // Use update because multiple agents could finish a turn at the same time, before the
            // waiting one has a chance to try again.
            scheduler.update(now + delay, Command::update_agent(req.agent));
            delay += Duration::EPSILON;
        }
    }

    /// This is only triggered for traffic signals.
    pub fn update_intersection(
        &mut self,
        now: Time,
        id: IntersectionID,
        map: &Map,
        scheduler: &mut Scheduler,
    ) {
        let i = map.get_i(id);

        // trivial function that advances the signal stage and returns duration
        fn advance(
            signal_state: &mut SignalState,
            signal: &ControlTrafficSignal,
            i: &Intersection,
            allow_crosswalk_skip: bool,
        ) -> Duration {
            signal_state.current_stage = (signal_state.current_stage + 1) % signal.stages.len();
            let stage = &signal.stages[signal_state.current_stage];
            // only skip for variable all-walk crosswalk
            if let StageType::Variable(_, _, _) = stage.stage_type {
                if allow_crosswalk_skip && stage.max_crosswalk_time(i).is_some() {
                    // we can skip this stage, as its all walk and we're allowed to skip (no
                    // pedestrian waiting).
                    signal_state.current_stage =
                        (signal_state.current_stage + 1) % signal.stages.len();
                }
            }
            signal.stages[signal_state.current_stage]
                .stage_type
                .simple_duration()
        }
        let state = self.state.get_mut(&id).unwrap();
        let signal_state = state.signal.as_mut().unwrap();
        let signal = map.get_traffic_signal(id);
        let ped_waiting = state.waiting.keys().any(|req| {
            if let AgentID::Pedestrian(_) = req.agent {
                return true;
            }
            false
        });
        let duration: Duration;
        // Switch to a new stage?
        assert_eq!(now, signal_state.stage_ends_at);
        let old_stage = &signal.stages[signal_state.current_stage];
        match old_stage.stage_type {
            StageType::Fixed(_) => {
                duration = advance(signal_state, signal, i, !ped_waiting);
            }
            StageType::Variable(min, delay, additional) => {
                // test if anyone is waiting in current stage, and if so, extend the signal cycle.
                // Filter out pedestrians, as they've had their chance and the delay
                // could be short enough to keep them on the curb.
                let delay = std::cmp::max(Duration::const_seconds(1.0), delay);
                // Only extend for the fixed additional time
                if signal_state.extensions_count as f64 * delay.inner_seconds()
                    >= additional.inner_seconds()
                {
                    self.events.push(Event::Alert(
                        AlertLocation::Intersection(id),
                        format!(
                            "exhausted a variable stage {},{},{},{}",
                            min, delay, additional, signal_state.extensions_count
                        ),
                    ));
                    duration = advance(signal_state, signal, i, !ped_waiting);
                    signal_state.extensions_count = 0;
                } else if state.waiting.keys().all(|req| {
                    if let AgentID::Pedestrian(_) = req.agent {
                        return true;
                    }
                    // Should we only allow protected to extend or any not banned?
                    // currently only the protected demand control extended.
                    old_stage.get_priority_of_turn(req.turn, i) != TurnPriority::Protected
                }) {
                    signal_state.extensions_count = 0;
                    duration = advance(signal_state, signal, i, !ped_waiting);
                } else {
                    signal_state.extensions_count += 1;
                    duration = delay;
                    self.events.push(Event::Alert(
                        AlertLocation::Intersection(id),
                        format!(
                            "Extending a variable stage {},{},{},{}",
                            min, delay, additional, signal_state.extensions_count
                        ),
                    ));
                }
            }
        }

        signal_state.stage_ends_at = now + duration;
        scheduler.push(signal_state.stage_ends_at, Command::UpdateIntersection(id));
        self.wakeup_waiting(now, id, scheduler, map);
    }

    /// For cars: The head car calls this when they're at the end of the lane WaitingToAdvance. If
    /// this returns true, then the head car MUST actually start this turn.
    /// For peds: Likewise -- only called when the ped is at the start of the turn. They must
    /// actually do the turn if this returns true.
    ///
    /// If this returns false, the agent should NOT retry. IntersectionSimState will schedule a
    /// retry event at some point.
    pub fn maybe_start_turn(
        &mut self,
        agent: AgentID,
        turn: TurnID,
        speed: Speed,
        now: Time,
        map: &Map,
        scheduler: &mut Scheduler,
        maybe_cars_and_queues: Option<(
            &Car,
            &FixedMap<CarID, Car>,
            &mut HashMap<Traversable, Queue>,
        )>,
    ) -> bool {
        #![allow(clippy::logic_bug)] // Remove once TODO below is taken care of
        let req = Request { agent, turn };

        if let Some(_eta) = self
            .state
            .get_mut(&turn.parent)
            .unwrap()
            .leader_eta
            .remove(&req.turn.src)
        {
            // When they're late, it's because of a slow laggy head. Conflicting turns would've
            // been blocked anyway. Uncomment to debug
            //info!("{} predicted ETA {}, actually {}", req.agent, eta, now);
        }

        let entry = self
            .state
            .get_mut(&turn.parent)
            .unwrap()
            .waiting
            .entry(req.clone());
        let repeat_request = match entry {
            std::collections::btree_map::Entry::Vacant(_) => false,
            std::collections::btree_map::Entry::Occupied(_) => true,
        };
        let urgent = if let Some((car, _, queues)) = maybe_cars_and_queues.as_ref() {
            queues[&car.router.head()].is_overflowing()
        } else {
            false
        };
        entry.or_insert((now, urgent));

        if repeat_request {
            self.total_repeat_requests += 1;
        }

        let shared_sidewalk_corner =
            map.get_t(req.turn).turn_type == TurnType::SharedSidewalkCorner;

        let readonly_pair = maybe_cars_and_queues.as_ref().map(|(_, c, q)| (*c, &**q));
        let started_uber_turn = |state: &Self, car: &Car| {
            state.handle_uber_turns && car.router.get_path().currently_inside_ut().is_some()
        };
        #[allow(clippy::if_same_then_else)]
        let allowed = if shared_sidewalk_corner {
            // SharedSidewalkCorner doesn't conflict with anything -- fastpath!
            true
        } else if !self.handle_accepted_conflicts(&req, map, readonly_pair, Some((now, scheduler)))
        {
            // It's never OK to perform a conflicting turn
            false
        } else if maybe_cars_and_queues
            .as_ref()
            .map(|(car, _, _)| started_uber_turn(self, *car))
            .unwrap_or(false)
        {
            // If we started an uber-turn, then finish it! But alert if we're running a red light.
            // TODO: Consider reenabling alert
            if let Some(signal) = map.maybe_get_traffic_signal(turn.parent) {
                // Don't pass in the scheduler, aka, don't pause before yielding.
                if !self.traffic_signal_policy(&req, map, signal, speed, now, None) && false {
                    self.events.push(Event::Alert(
                        AlertLocation::Intersection(req.turn.parent),
                        format!("Running a red light inside an uber-turn: {:?}", req),
                    ));
                }
            }

            true
        } else if self.use_freeform_policy_everywhere {
            // If we made it this far, we don't conflict with an accepted turn
            true
        } else if let Some(signal) = map.maybe_get_traffic_signal(turn.parent) {
            self.traffic_signal_policy(&req, map, signal, speed, now, Some(scheduler))
        } else if let Some(sign) = map.maybe_get_stop_sign(turn.parent) {
            self.stop_sign_policy(&req, map, sign, speed, now, scheduler)
        } else {
            unreachable!()
        };
        if !allowed {
            if repeat_request {
                self.not_allowed_requests += 1;
            }
            // remove the reservation if we're about to start a UT and can't move
            if self.handle_uber_turns {
                if let Some(ut) = maybe_cars_and_queues
                    .as_ref()
                    .and_then(|(car, _, _)| car.router.get_path().about_to_start_ut())
                {
                    for t in &ut.path {
                        self.state
                            .get_mut(&t.parent)
                            .unwrap()
                            .reserved
                            .remove(&Request { agent, turn: *t });
                    }
                }
            }
            return false;
        }

        // Lock the entire uber-turn.
        if self.handle_uber_turns {
            if let Some(ut) = maybe_cars_and_queues
                .as_ref()
                .and_then(|(car, _, _)| car.router.get_path().about_to_start_ut())
            {
                // If there's a problem up ahead, don't start.
                for t in &ut.path {
                    let req = Request { agent, turn: *t };
                    if !self.handle_accepted_conflicts(&req, map, readonly_pair, None) {
                        if repeat_request {
                            self.blocked_by_someone_requests += 1;
                        }
                        return false;
                    }
                }
                // If the way is clear, make sure it stays that way.
                for t in &ut.path {
                    self.state
                        .get_mut(&t.parent)
                        .unwrap()
                        .reserved
                        .insert(Request { agent, turn: *t });
                }
            }
        }

        // Don't block the box.
        if let Some((car, cars, queues)) = maybe_cars_and_queues {
            assert_eq!(agent, AgentID::Car(car.vehicle.id));
            let inside_ut = self.handle_uber_turns
                && (car.router.get_path().currently_inside_ut().is_some()
                    || car.router.get_path().about_to_start_ut().is_some());
            let queue = queues.get_mut(&Traversable::Lane(turn.dst)).unwrap();
            if !queue.try_to_reserve_entry(
                car,
                !self.dont_block_the_box
                    || allow_block_the_box(map.get_i(turn.parent))
                    || inside_ut,
            ) {
                let mut actually_did_reserve_entry = false;
                if self.break_turn_conflict_cycles {
                    if let Some(c) = queue.laggy_head {
                        self.blocked_by.insert((car.vehicle.id, c));
                    } else if let Some(c) = queue.get_active_cars().get(0) {
                        self.blocked_by.insert((car.vehicle.id, *c));
                    } else {
                        // try_to_reserve_entry must have failed because somebody has filled up
                        // reserved_length. That only happens while a turn is in progress, so this
                        // unwrap() must work.
                        let blocking_req = self.state[&turn.parent]
                            .accepted
                            .iter()
                            .find(|r| r.turn.dst == turn.dst)
                            .unwrap();
                        self.blocked_by
                            .insert((car.vehicle.id, blocking_req.agent.as_car()));
                    }

                    // Allow blocking the box if we're part of a cycle.
                    if self
                        .detect_conflict_cycle(car.vehicle.id, (cars, queues))
                        .is_some()
                    {
                        // Reborrow
                        let queue = queues.get_mut(&Traversable::Lane(turn.dst)).unwrap();
                        actually_did_reserve_entry = queue.try_to_reserve_entry(car, true);
                    }
                }

                if !actually_did_reserve_entry {
                    if repeat_request {
                        self.blocked_by_someone_requests += 1;
                    }
                    return false;
                }
            }
        }

        // TODO For now, we're only interested in signals, and there's too much raw data to store
        // for stop signs too.
        let state = self.state.get_mut(&turn.parent).unwrap();
        state.waiting.remove(&req).unwrap();
        state.accepted.insert(req);
        if self.break_turn_conflict_cycles {
            if let AgentID::Car(car) = agent {
                self.blocked_by.retain(|(c, _)| *c != car);
            }
        }
        true
    }

    pub fn collect_events(&mut self) -> Vec<Event> {
        std::mem::take(&mut self.events)
    }

    pub fn handle_live_edited_traffic_signals(
        &mut self,
        now: Time,
        map: &Map,
        scheduler: &mut Scheduler,
    ) {
        for state in self.state.values_mut() {
            match (
                map.maybe_get_traffic_signal(state.id),
                state.signal.as_mut(),
            ) {
                (Some(ts), Some(signal_state)) => {
                    if signal_state.current_stage >= ts.stages.len() {
                        // Just jump back to the first one. Shrug.
                        signal_state.current_stage = 0;
                        println!(
                            "WARNING: Traffic signal {} was live-edited in the middle of a stage, \
                             so jumping back to the first stage",
                            state.id
                        );
                    }
                }
                (Some(_), None) => {
                    state.signal = Some(SignalState::new(state.id, now, map, scheduler));
                }
                (None, Some(_)) => {
                    state.signal = None;
                    scheduler.cancel(Command::UpdateIntersection(state.id));
                }
                (None, None) => {}
            }

            // It's unlikely, but the player might create/destroy traffic signals close together and
            // change the uber-turns that exist. To be safe, recalculate everywhere.
            state.uber_turn_neighbors.clear();
            if let Some(mut set) = map_model::IntersectionCluster::autodetect(state.id, map) {
                set.remove(&state.id);
                state.uber_turn_neighbors.extend(set);
            }
        }
    }

    pub fn handle_live_edits(&self, map: &Map) {
        // Just sanity check that we don't have any references to deleted turns
        let mut errors = Vec::new();
        for state in self.state.values() {
            for req in &state.accepted {
                if map.maybe_get_t(req.turn).is_none() {
                    errors.push(format!("{} accepted for {}", req.agent, req.turn));
                }
            }
            for req in state.waiting.keys() {
                if map.maybe_get_t(req.turn).is_none() {
                    errors.push(format!("{} waiting for {}", req.agent, req.turn));
                }
            }
            for req in &state.reserved {
                if map.maybe_get_t(req.turn).is_none() {
                    errors.push(format!("{} has reserved {}", req.agent, req.turn));
                }
            }
        }
        if !errors.is_empty() {
            for x in errors {
                error!("{}", x);
            }
            panic!("After live map edits, intersection state refers to deleted turns!");
        }
    }

    // Not calling this for pedestrians right now.
    // This is "best effort". If we get something wrong, somebody might start a turn and cut off an
    // approaching vehicle.
    // And it's idempotent -- can call to update an ETA.
    pub fn approaching_leader(&mut self, agent: AgentID, turn: TurnID, eta: Time) {
        let state = self.state.get_mut(&turn.parent).unwrap();
        // If there was a previous entry here for turn.src, then this leader is spawning in front
        // of the previous leader on a driveway
        state
            .leader_eta
            .insert(turn.src, (Request { agent, turn }, eta));
    }
}

// Queries
impl IntersectionSimState {
    pub fn nobody_headed_towards(&self, lane: LaneID, i: IntersectionID) -> bool {
        let state = &self.state[&i];
        !state
            .accepted
            .iter()
            .chain(state.reserved.iter())
            .any(|req| req.turn.dst == lane)
    }

    pub fn debug_json(&self, id: IntersectionID, map: &Map) -> String {
        let json1 = abstutil::to_json(&self.state[&id]);
        let json2 = if let Some(ref sign) = map.maybe_get_stop_sign(id) {
            abstutil::to_json(sign)
        } else if let Some(ref signal) = map.maybe_get_traffic_signal(id) {
            abstutil::to_json(signal)
        } else {
            "\"Border\"".to_string()
        };
        format!("[{json1}, {json2}]")
    }

    pub fn get_accepted_agents(&self, id: IntersectionID) -> Vec<(AgentID, TurnID)> {
        self.state[&id]
            .accepted
            .iter()
            .map(|req| (req.agent, req.turn))
            .collect()
    }

    pub fn get_waiting_agents(&self, id: IntersectionID) -> Vec<(AgentID, TurnID, Time)> {
        self.state[&id]
            .waiting
            .iter()
            .map(|(req, (time, _))| (req.agent, req.turn, *time))
            .collect()
    }

    /// Returns intersections with travelers waiting for at least `threshold` since `now`, ordered
    /// so the longest delayed intersection is first.
    pub fn delayed_intersections(
        &self,
        now: Time,
        threshold: Duration,
    ) -> Vec<(IntersectionID, Time)> {
        let mut candidates = Vec::new();
        for state in self.state.values() {
            if let Some((earliest, _)) = state.waiting.values().min() {
                if now - *earliest >= threshold {
                    candidates.push((state.id, *earliest));
                }
            }
        }
        candidates.sort_by_key(|(_, t)| *t);
        candidates
    }

    pub fn current_stage_and_remaining_time(
        &self,
        now: Time,
        i: IntersectionID,
    ) -> (usize, Duration) {
        let state = &self.state[&i].signal.as_ref().unwrap();
        if now > state.stage_ends_at {
            panic!(
                "At {}, but {} should have advanced its stage at {}",
                now, i, state.stage_ends_at
            );
        }
        (state.current_stage, state.stage_ends_at - now)
    }

    pub fn describe_stats(&self) -> Vec<String> {
        vec![
            "intersection stats".to_string(),
            format!(
                "{} total turn requests repeated after the initial attempt",
                prettyprint_usize(self.total_repeat_requests)
            ),
            format!(
                "{} not allowed by intersection ({}%)",
                prettyprint_usize(self.not_allowed_requests),
                (100.0 * (self.not_allowed_requests as f64) / (self.total_repeat_requests as f64))
                    .round()
            ),
            format!(
                "{} blocked by someone in the way ({}%)",
                prettyprint_usize(self.blocked_by_someone_requests),
                (100.0 * (self.blocked_by_someone_requests as f64)
                    / (self.total_repeat_requests as f64))
                    .round()
            ),
        ]
    }

    pub fn populate_blocked_by(
        &self,
        now: Time,
        graph: &mut BTreeMap<AgentID, (Duration, DelayCause)>,
        map: &Map,
        cars: &FixedMap<CarID, Car>,
        queues: &HashMap<Traversable, Queue>,
    ) {
        // Don't use self.blocked_by -- that gets complicated with uber-turns and such.
        //
        // This also assumes default values for handle_uber_turns, disable_turn_conflicts, etc!
        for state in self.state.values() {
            for (req, (started_at, _)) in &state.waiting {
                let turn = map.get_t(req.turn);
                // In the absence of other explanations, the agent must be pausing at a stop sign
                // or before making an unprotected movement, aka, in the middle of
                // WAIT_AT_STOP_SIGN or WAIT_BEFORE_YIELD_AT_TRAFFIC_SIGNAL. Or they're waiting for
                // a signal to change.
                let mut cause = DelayCause::Intersection(state.id);
                if let Some(other) = state.accepted.iter().find(|other| {
                    turn.conflicts_with(map.get_t(other.turn)) || turn.id == other.turn
                }) {
                    cause = DelayCause::Agent(other.agent);
                } else if let AgentID::Car(car) = req.agent {
                    let queue = &queues[&Traversable::Lane(req.turn.dst)];
                    let car = cars.get(&car).unwrap();
                    if !queue.room_for_car(car) {
                        // TODO Or it's reserved due to an uber turn or something
                        let blocker = queue
                            .get_active_cars()
                            .last()
                            .cloned()
                            .or(queue.laggy_head)
                            .unwrap();
                        cause = DelayCause::Agent(AgentID::Car(blocker));
                    } else if let Some(ut) = car.router.get_path().about_to_start_ut() {
                        if let Some(blocker) = self.check_for_conflicts_before_uber_turn(ut, map) {
                            cause = DelayCause::Agent(blocker);
                        }
                    }
                }
                graph.insert(req.agent, (now - *started_at, cause));
            }
        }
    }

    /// See if any agent is currently performing a turn that conflicts with an uber-turn. Doesn't
    /// check for room on the queues.
    fn check_for_conflicts_before_uber_turn(&self, ut: &UberTurn, map: &Map) -> Option<AgentID> {
        for t in &ut.path {
            let turn = map.get_t(*t);
            let state = &self.state[&turn.id.parent];
            for other in state.accepted.iter().chain(state.reserved.iter()) {
                if map.get_t(other.turn).conflicts_with(turn) {
                    return Some(other.agent);
                }
            }
        }
        None
    }
}

// Stuff to support maybe_start_turn
impl IntersectionSimState {
    fn stop_sign_policy(
        &mut self,
        req: &Request,
        map: &Map,
        sign: &ControlStopSign,
        speed: Speed,
        now: Time,
        scheduler: &mut Scheduler,
    ) -> bool {
        let our_priority = sign.get_priority(req.turn, map);
        assert!(our_priority != TurnPriority::Banned);
        let (our_time, _) = self.state[&req.turn.parent].waiting[req];

        if our_priority == TurnPriority::Yield && now < our_time + WAIT_AT_STOP_SIGN {
            // Since we have "ownership" of scheduling for req.agent, don't need to use
            // scheduler.update.
            scheduler.push(
                our_time + WAIT_AT_STOP_SIGN,
                Command::update_agent(req.agent),
            );
            return false;
        }

        // Once upon a time, we'd make sure that this request doesn't conflict with another in
        // self.waiting:
        // 1) Higher-ranking turns get to go first.
        // 2) Equal-ranking turns that started waiting before us get to go first.
        // But the exceptions started stacking -- if the other agent is blocked or the turns don't
        // even conflict, then allow it. Except determining if the other agent is blocked or not is
        // tough and kind of recursive.
        //
        // So instead, don't do any of that! The WAIT_AT_STOP_SIGN scheduling above and the fact
        // that events are processed in time order mean that case #2 is magically handled anyway.
        // If a case #1 could've started by now, then they would have. Since they didn't, they must
        // be blocked.

        // TODO Make sure we can optimistically finish this turn before an approaching
        // higher-priority vehicle wants to begin.

        // If a pedestrian is going to cut off a car, check how long the car has been waiting and
        // maybe yield (regardless of stop sign priority). This is a very rough start to more
        // realistic "batching" of pedestrians to cross a street. Without this, if there's one
        // pedestrian almost clear of a crosswalk, cars are totally stopped for them, and so a new
        // pedestrian arriving will win.
        if req.agent.is_pedestrian() {
            let our_turn = map.get_t(req.turn);
            let time_to_cross = our_turn.geom.length() / speed;
            for (other_req, (other_time, _)) in &self.state[&req.turn.parent].waiting {
                if matches!(other_req.agent, AgentID::Car(_)) {
                    if our_turn.conflicts_with(map.get_t(other_req.turn)) {
                        let our_waiting = now - our_time;
                        let other_waiting = now - *other_time;
                        // We can't tell if a car has been waiting for a while due to pedestrians
                        // crossing, or due to a blockage in their destination queue. Always let
                        // pedestrians muscle their way in eventually.
                        if our_waiting > other_waiting {
                            continue;
                        }
                        // Intuition: another pedestrian trying to enter a crosswalk has a 3s
                        // buffer to "join" the first pedestrian who started crossing and caused
                        // cars to stop. We're using the time for _this_ pedestrian to cross _this_
                        // turn, so it's a very rough definition.
                        if other_waiting > time_to_cross + Duration::seconds(3.0) {
                            return false;
                        }
                    }
                }
            }
        }

        true
    }

    fn traffic_signal_policy(
        &mut self,
        req: &Request,
        map: &Map,
        signal: &ControlTrafficSignal,
        speed: Speed,
        now: Time,
        scheduler: Option<&mut Scheduler>,
    ) -> bool {
        let turn = map.get_t(req.turn);

        let state = &self.state[&req.turn.parent];
        let signal_state = state.signal.as_ref().unwrap();
        let stage = &signal.stages[signal_state.current_stage];
        let full_stage_duration = stage.stage_type.simple_duration();
        let remaining_stage_time = signal_state.stage_ends_at - now;
        let (our_time, _) = state.waiting[req];

        // Can't go at all this stage.
        let our_priority = stage.get_priority_of_turn(req.turn, map.get_i(state.id));
        if our_priority == TurnPriority::Banned {
            return false;
        }

        if our_priority == TurnPriority::Yield
            && now < our_time + WAIT_BEFORE_YIELD_AT_TRAFFIC_SIGNAL
        {
            // Since we have "ownership" of scheduling for req.agent, don't need to use
            // scheduler.update.
            if let Some(s) = scheduler {
                s.push(
                    our_time + WAIT_BEFORE_YIELD_AT_TRAFFIC_SIGNAL,
                    Command::update_agent(req.agent),
                );
            }
            return false;
        }

        // Previously: A yield loses to a conflicting Priority turn.
        // But similar to the description in stop_sign_policy, this caused unnecessary gridlock.
        // Priority vehicles getting scheduled first just requires a little tweak in
        // update_intersection.

        // TODO Make sure we can optimistically finish this turn before an approaching
        // higher-priority vehicle wants to begin.

        // Optimistically if nobody else is in the way, this is how long it'll take to finish the
        // turn. Don't start the turn if we won't finish by the time the light changes. If we get
        // it wrong, that's fine -- block the box a bit.
        let time_to_cross = turn.geom.length() / speed;
        if time_to_cross > remaining_stage_time {
            // Signals enforce a minimum crosswalk time, but some pedestrians are configured to
            // walk very slowly. In that case, allow them to go anyway and wind up in the crosswalk
            // during a red. This matches reality reasonably.
            if time_to_cross <= full_stage_duration {
                return false;
            }
        }

        true
    }

    // If true, the request can go.
    fn handle_accepted_conflicts(
        &mut self,
        req: &Request,
        map: &Map,
        maybe_cars_and_queues: Option<(&FixedMap<CarID, Car>, &HashMap<Traversable, Queue>)>,
        wakeup_stuck_cycle: Option<(Time, &mut Scheduler)>,
    ) -> bool {
        let turn = map.get_t(req.turn);
        let mut cycle_detected = false;
        let mut ok = true;
        for other in self.state[&req.turn.parent]
            .accepted
            .iter()
            .chain(self.state[&req.turn.parent].reserved.iter())
        {
            // Never short-circuit; always record all of the dependencies; it might help someone
            // else unstick things.
            if map.get_t(other.turn).conflicts_with(turn) {
                if self.break_turn_conflict_cycles {
                    if let AgentID::Car(c) = req.agent {
                        if let AgentID::Car(c2) = other.agent {
                            self.blocked_by.insert((c, c2));
                        }
                        if !cycle_detected {
                            if let Some(cycle) =
                                self.detect_conflict_cycle(c, maybe_cars_and_queues.unwrap())
                            {
                                // Allow the conflicting turn!
                                self.events.push(Event::Alert(
                                    AlertLocation::Intersection(req.turn.parent),
                                    format!(
                                        "{} found turn conflict cycle involving {:?}",
                                        req.agent, cycle
                                    ),
                                ));
                                cycle_detected = true;
                            }
                        }
                    }
                }

                if !cycle_detected && !self.disable_turn_conflicts {
                    ok = false;
                }

                // It's never safe for two vehicles to go for the same lane.
                // TODO I'm questioning this now. If the source is the same, then queueing will
                // work normally. If not, then... maybe we need to allow concurrent turns from
                // different lanes into the same lane, and somehow make the queueing work out.
                if turn.id.dst == other.turn.dst {
                    if let (Some((now, scheduler)), AgentID::Car(blocker), Some((cars, _))) = (
                        wakeup_stuck_cycle,
                        other.agent,
                        maybe_cars_and_queues.as_ref(),
                    ) {
                        // Sometimes the vehicle blocking us is actually queued in the turn;
                        // don't wake them up in that case.
                        if cycle_detected
                            && matches!(cars[&blocker].state, CarState::WaitingToAdvance { .. })
                        {
                            self.events.push(Event::Alert(
                                AlertLocation::Intersection(req.turn.parent),
                                format!(
                                    "{} waking up {}, who's blocking it as part of a cycle",
                                    req.agent, other.agent
                                ),
                            ));
                            scheduler.update(
                                now + Duration::EPSILON,
                                Command::update_agent(other.agent),
                            );
                        }
                    }
                    return false;
                }
            }
        }
        ok
    }

    fn detect_conflict_cycle(
        &self,
        car: CarID,
        pair: (&FixedMap<CarID, Car>, &HashMap<Traversable, Queue>),
    ) -> Option<HashSet<CarID>> {
        let (cars, queues) = pair;

        let mut queue = vec![car];
        let mut seen = HashSet::new();
        while !queue.is_empty() {
            let current = queue.pop().unwrap();
            // Might not actually be a cycle. Insist on seeing the original req.agent
            // again.
            if !seen.is_empty() && current == car {
                return Some(seen);
            }
            if !seen.contains(&current) {
                seen.insert(current);

                for (c1, c2) in &self.blocked_by {
                    if *c1 == current {
                        queue.push(*c2);
                    }
                }

                // If this car isn't the head of its queue, add that dependency. (Except for
                // the original car, which we already know is the head of its queue)
                // TODO Maybe store this in blocked_by?
                if current != car {
                    let q = &queues[&cars[&current].router.head()];
                    let head = if let Some(c) = q.laggy_head {
                        c
                    } else {
                        q.get_active_cars()[0]
                    };
                    if current != head {
                        queue.push(head);
                    }
                }
            }
        }
        None
    }
}

impl SignalState {
    fn new(id: IntersectionID, now: Time, map: &Map, scheduler: &mut Scheduler) -> SignalState {
        let mut state = SignalState {
            current_stage: 0,
            stage_ends_at: now,
            extensions_count: 0,
        };

        let signal = map.get_traffic_signal(id);
        // What stage are we starting with?
        let mut offset = (now - Time::START_OF_DAY) + signal.offset;
        loop {
            let dt = signal.stages[state.current_stage]
                .stage_type
                .simple_duration();
            if offset >= dt {
                offset -= dt;
                state.current_stage += 1;
                if state.current_stage == signal.stages.len() {
                    state.current_stage = 0;
                }
            } else {
                state.stage_ends_at = now + dt - offset;
                break;
            }
        }
        scheduler.push(state.stage_ends_at, Command::UpdateIntersection(id));
        state
    }
}

fn allow_block_the_box(i: &Intersection) -> bool {
    // Degenerate intersections are often just artifacts of how roads are split up in OSM. Allow
    // vehicles to get stuck in them, since the only possible thing they could block is pedestrians
    // from using the crosswalk. Those crosswalks usually don't exist in reality, so this behavior
    // is more realistic.
    if i.roads.len() == 2 {
        return true;
    }

    // TODO Sometimes a traffic signal is surrounded by tiny lanes with almost no capacity.
    // Workaround for now.
    //
    // When adding new cases:
    // 1) Organize by which map the intersection fixes
    // 2) Ensure a prebaked scenario covers this, to track regressions and make sure it actually
    //    helps.
    let id = i.orig_id.0;
    // lakeslice
    if id == 53211693
        || id == 53214134
        || id == 53214133
        || id == 987334546
        || id == 848817336
        || id == 1726088131
        || id == 1726088130
        || id == 53217946
        || id == 53223864
        || id == 53211694
        || id == 5440360144
        || id == 246768814
    {
        return true;
    }
    // poundbury
    if id == 18030505 || id == 2124133018 || id == 30024649 {
        return true;
    }
    false
}