1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
use std::collections::{BTreeMap, BTreeSet};

use anyhow::Result;
use serde::{Deserialize, Serialize};

use abstio::MapName;
use abstutil::Timer;
use map_model::osm::RoadRank;
use map_model::{Block, Map, Perimeter, RoadID, RoadSideID};
use widgetry::Color;

use crate::App;

const COLORS: [Color; 6] = [
    Color::BLUE,
    Color::YELLOW,
    Color::GREEN,
    Color::PURPLE,
    Color::PINK,
    Color::ORANGE,
];

/// An opaque ID, won't be contiguous as we adjust boundaries
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
pub struct NeighborhoodID(usize);

/// Identifies a single / unmerged block, which never changes
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
pub struct BlockID(usize);

// Some states want this
impl widgetry::mapspace::ObjectID for NeighborhoodID {}
impl widgetry::mapspace::ObjectID for BlockID {}

#[derive(Clone, Serialize, Deserialize)]
pub struct Partitioning {
    pub map: MapName,
    neighborhoods: BTreeMap<NeighborhoodID, (Block, Color)>,
    // The single / unmerged blocks never change
    single_blocks: Vec<Block>,

    neighborhood_id_counter: usize,

    // Invariant: This is a surjection, every block belongs to exactly one neighborhood
    block_to_neighborhood: BTreeMap<BlockID, NeighborhoodID>,
}

impl Partitioning {
    /// Only valid before the LTN tool has been activated this session
    pub fn empty() -> Partitioning {
        Partitioning {
            map: MapName::new("zz", "temp", "orary"),
            neighborhoods: BTreeMap::new(),
            single_blocks: Vec::new(),

            neighborhood_id_counter: 0,

            block_to_neighborhood: BTreeMap::new(),
        }
    }

    pub fn is_empty(&self) -> bool {
        self.neighborhoods.is_empty()
    }

    pub fn seed_using_heuristics(app: &App, timer: &mut Timer) -> Partitioning {
        let map = &app.map;
        timer.start("find single blocks");
        let mut single_blocks = Vec::new();
        let mut single_block_perims = Vec::new();
        for mut perim in Perimeter::find_all_single_blocks(map) {
            // TODO Some perimeters don't blockify after collapsing dead-ends. So do this upfront,
            // and separately work on any blocks that don't show up.
            // https://github.com/a-b-street/abstreet/issues/841
            perim.collapse_deadends();
            if let Ok(block) = perim.to_block(map) {
                single_block_perims.push(block.perimeter.clone());
                single_blocks.push(block);
            }
        }
        timer.stop("find single blocks");

        timer.start("partition");
        let partitions = Perimeter::partition_by_predicate(single_block_perims, |r| {
            // "Interior" roads of a neighborhood aren't classified as arterial
            map.get_r(r).get_rank() == RoadRank::Local
        });

        let mut merged = Vec::new();
        for perimeters in partitions {
            // If we got more than one result back, merging partially failed. Oh well?
            merged.extend(Perimeter::merge_all(map, perimeters, false));
        }
        timer.stop("partition");

        timer.start_iter("blockify", merged.len());
        let mut blocks = Vec::new();
        for perimeter in merged {
            timer.next();
            match perimeter.to_block(map) {
                Ok(block) => {
                    blocks.push(block);
                }
                Err(err) => {
                    warn!("Failed to make a block from a merged perimeter: {}", err);
                }
            }
        }

        let mut neighborhoods = BTreeMap::new();
        for block in blocks {
            neighborhoods.insert(NeighborhoodID(neighborhoods.len()), (block, Color::RED));
        }
        let neighborhood_id_counter = neighborhoods.len();
        let mut p = Partitioning {
            map: map.get_name().clone(),
            neighborhoods,
            single_blocks,

            neighborhood_id_counter,
            block_to_neighborhood: BTreeMap::new(),
        };

        // TODO We could probably build this up as we go
        for id in p.all_block_ids() {
            if let Some(neighborhood) = p.neighborhood_containing(id) {
                p.block_to_neighborhood.insert(id, neighborhood);
            } else {
                // TODO This will break everything downstream, so bail out immediately
                panic!(
                    "Block doesn't belong to any neighborhood?! {:?}",
                    p.get_block(id).perimeter
                );
            }
        }

        p.recalculate_coloring();
        p
    }

    /// True if the coloring changed
    pub fn recalculate_coloring(&mut self) -> bool {
        let perims: Vec<Perimeter> = self
            .neighborhoods
            .values()
            .map(|pair| pair.0.perimeter.clone())
            .collect();
        let colors = Perimeter::calculate_coloring(&perims, COLORS.len())
            .unwrap_or_else(|| (0..perims.len()).collect());
        let orig_coloring: Vec<Color> = self.neighborhoods.values().map(|pair| pair.1).collect();
        for (pair, color_idx) in self.neighborhoods.values_mut().zip(colors.into_iter()) {
            pair.1 = COLORS[color_idx % COLORS.len()];
        }
        let new_coloring: Vec<Color> = self.neighborhoods.values().map(|pair| pair.1).collect();
        orig_coloring != new_coloring
    }

    // TODO Explain return value
    pub fn transfer_block(
        &mut self,
        map: &Map,
        id: BlockID,
        old_owner: NeighborhoodID,
        new_owner: NeighborhoodID,
    ) -> Result<Option<NeighborhoodID>> {
        assert_ne!(old_owner, new_owner);

        // Is the newly expanded neighborhood a valid perimeter?
        let new_owner_blocks: Vec<BlockID> = self
            .block_to_neighborhood
            .iter()
            .filter_map(|(block, neighborhood)| {
                if *neighborhood == new_owner || *block == id {
                    Some(*block)
                } else {
                    None
                }
            })
            .collect();
        let mut new_neighborhood_blocks = self.make_merged_blocks(map, new_owner_blocks)?;
        if new_neighborhood_blocks.len() != 1 {
            // This happens when a hole would be created by adding this block. There are probably
            // some smaller blocks nearby to add first.
            bail!(
                "You must first add intermediate blocks to avoid splitting this neighborhood into {} pieces",
                new_neighborhood_blocks.len()
            );
        }
        let new_neighborhood_block = new_neighborhood_blocks.pop().unwrap();

        // Is the old neighborhood, minus this block, still valid?
        // TODO refactor Neighborhood to BlockIDs?
        let old_owner_blocks: Vec<BlockID> = self
            .block_to_neighborhood
            .iter()
            .filter_map(|(block, neighborhood)| {
                if *neighborhood == old_owner && *block != id {
                    Some(*block)
                } else {
                    None
                }
            })
            .collect();
        if old_owner_blocks.is_empty() {
            // We're deleting the old neighborhood!
            self.neighborhoods.get_mut(&new_owner).unwrap().0 = new_neighborhood_block;
            self.neighborhoods.remove(&old_owner).unwrap();
            self.block_to_neighborhood.insert(id, new_owner);
            // Tell the caller to recreate this SelectBoundary state, switching to the neighborhood
            // we just donated to, since the old is now gone
            return Ok(Some(new_owner));
        }

        let mut old_neighborhood_blocks = self.make_merged_blocks(map, old_owner_blocks.clone())?;
        // We might be splitting the old neighborhood into multiple pieces! Pick the largest piece
        // as the old_owner (so the UI for trimming a neighborhood is less jarring), and create new
        // neighborhoods for the others.
        old_neighborhood_blocks.sort_by_key(|block| block.perimeter.interior.len());
        self.neighborhoods.get_mut(&old_owner).unwrap().0 = old_neighborhood_blocks.pop().unwrap();
        let new_splits = !old_neighborhood_blocks.is_empty();
        for split_piece in old_neighborhood_blocks {
            let new_neighborhood = NeighborhoodID(self.neighborhood_id_counter);
            self.neighborhood_id_counter += 1;
            // Temporary color
            self.neighborhoods
                .insert(new_neighborhood, (split_piece, Color::RED));
        }
        if new_splits {
            // We need to update the owner of all single blocks in these new pieces
            for id in old_owner_blocks {
                self.block_to_neighborhood
                    .insert(id, self.neighborhood_containing(id).unwrap());
            }
        }

        self.neighborhoods.get_mut(&new_owner).unwrap().0 = new_neighborhood_block;
        self.block_to_neighborhood.insert(id, new_owner);
        Ok(None)
    }

    /// Needs to find an existing neighborhood to take the block, or make a new one
    pub fn remove_block_from_neighborhood(
        &mut self,
        map: &Map,
        id: BlockID,
        old_owner: NeighborhoodID,
    ) -> Result<Option<NeighborhoodID>> {
        // Find all RoadSideIDs in the block matching the current neighborhood perimeter. Look for
        // the first one that borders another neighborhood, and transfer the block there.
        // TODO This can get unintuitive -- if we remove a block bordering two other
        // neighborhoods, which one should we donate to?
        let current_perim_set: BTreeSet<RoadSideID> = self.neighborhoods[&old_owner]
            .0
            .perimeter
            .roads
            .iter()
            .cloned()
            .collect();
        for road_side in &self.get_block(id).perimeter.roads {
            if !current_perim_set.contains(road_side) {
                continue;
            }
            // Is there another neighborhood that has the other side of this road on its perimeter?
            // TODO We could map road -> BlockID then use block_to_neighborhood
            let other_side = road_side.other_side();
            if let Some((new_owner, _)) = self
                .neighborhoods
                .iter()
                .find(|(_, (block, _))| block.perimeter.roads.contains(&other_side))
            {
                let new_owner = *new_owner;
                return self.transfer_block(map, id, old_owner, new_owner);
            }
        }

        // We didn't find any match, so we're jettisoning a block near the edge of the map (or a
        // buggy area missing blocks). Create a new neighborhood with just this block.
        let new_owner = NeighborhoodID(self.neighborhood_id_counter);
        self.neighborhood_id_counter += 1;
        // Temporary color
        self.neighborhoods
            .insert(new_owner, (self.get_block(id).clone(), Color::RED));
        let result = self.transfer_block(map, id, old_owner, new_owner);
        if result.is_err() {
            // Revert the change above!
            self.neighborhoods.remove(&new_owner).unwrap();
        }
        result
    }
}

// Read-only
impl Partitioning {
    pub fn neighborhood_block(&self, id: NeighborhoodID) -> &Block {
        &self.neighborhoods[&id].0
    }

    pub fn neighborhood_color(&self, id: NeighborhoodID) -> Color {
        self.neighborhoods[&id].1
    }

    pub fn all_neighborhoods(&self) -> &BTreeMap<NeighborhoodID, (Block, Color)> {
        &self.neighborhoods
    }

    // Just used for initial creation
    fn neighborhood_containing(&self, find_block: BlockID) -> Option<NeighborhoodID> {
        // TODO We could probably build this mapping up when we do Perimeter::merge_all
        let find_block = self.get_block(find_block);
        for (id, (block, _)) in &self.neighborhoods {
            if block.perimeter.contains(&find_block.perimeter) {
                return Some(*id);
            }
        }
        None
    }

    pub fn all_single_blocks(&self) -> Vec<(BlockID, &Block)> {
        self.single_blocks
            .iter()
            .enumerate()
            .map(|(idx, block)| (BlockID(idx), block))
            .collect()
    }

    pub fn all_block_ids(&self) -> Vec<BlockID> {
        (0..self.single_blocks.len()).map(BlockID).collect()
    }

    pub fn get_block(&self, id: BlockID) -> &Block {
        &self.single_blocks[id.0]
    }

    pub fn block_to_neighborhood(&self, id: BlockID) -> NeighborhoodID {
        self.block_to_neighborhood[&id]
    }

    pub fn some_block_in_neighborhood(&self, id: NeighborhoodID) -> BlockID {
        for (block, neighborhood) in &self.block_to_neighborhood {
            if id == *neighborhood {
                return *block;
            }
        }
        unreachable!("{:?} has no blocks", id);
    }

    /// Blocks on the "frontier" are adjacent to the perimeter, either just inside or outside.
    pub fn calculate_frontier(&self, perim: &Perimeter) -> BTreeSet<BlockID> {
        let perim_roads: BTreeSet<RoadID> = perim.roads.iter().map(|id| id.road).collect();

        let mut frontier = BTreeSet::new();
        for (block_id, block) in self.all_single_blocks() {
            for road_side_id in &block.perimeter.roads {
                // If the perimeter has this RoadSideID on the same side, we're just inside. If it has
                // the other side, just on the outside. Either way, on the frontier.
                if perim_roads.contains(&road_side_id.road) {
                    frontier.insert(block_id);
                    break;
                }
            }
        }
        frontier
    }

    // Possibly returns multiple merged blocks. The input is never "lost" -- if any perimeter fails
    // to become a block, fail the whole operation.
    fn make_merged_blocks(&self, map: &Map, input: Vec<BlockID>) -> Result<Vec<Block>> {
        let mut perimeters = Vec::new();
        for id in input {
            perimeters.push(self.get_block(id).perimeter.clone());
        }
        let mut blocks = Vec::new();
        for perim in Perimeter::merge_all(map, perimeters, false) {
            blocks.push(perim.to_block(map)?);
        }
        Ok(blocks)
    }
}