1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
use std::fmt;
use ordered_float::NotNan;
use serde::{Deserialize, Serialize};
use crate::{
deserialize_f64, serialize_f64, trim_f64, Angle, Distance, GPSBounds, LonLat, EPSILON_DIST,
};
#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
pub struct Pt2D {
#[serde(serialize_with = "serialize_f64", deserialize_with = "deserialize_f64")]
x: f64,
#[serde(serialize_with = "serialize_f64", deserialize_with = "deserialize_f64")]
y: f64,
}
impl std::cmp::PartialEq for Pt2D {
fn eq(&self, other: &Pt2D) -> bool {
self.approx_eq(*other, EPSILON_DIST)
}
}
impl Pt2D {
pub fn new(x: f64, y: f64) -> Pt2D {
if !x.is_finite() || !y.is_finite() {
panic!("Bad Pt2D {}, {}", x, y);
}
Pt2D {
x: trim_f64(x),
y: trim_f64(y),
}
}
pub fn zero() -> Self {
Self::new(0.0, 0.0)
}
pub fn approx_eq(self, other: Pt2D, threshold: Distance) -> bool {
self.dist_to(other) <= threshold
}
pub fn to_gps(self, b: &GPSBounds) -> LonLat {
let (width, height) = {
let pt = b.get_max_world_pt();
(pt.x(), pt.y())
};
let lon = (self.x() / width * (b.max_lon - b.min_lon)) + b.min_lon;
let lat = b.min_lat + ((b.max_lat - b.min_lat) * (height - self.y()) / height);
LonLat::new(lon, lat)
}
pub fn x(self) -> f64 {
self.x
}
pub fn y(self) -> f64 {
self.y
}
pub fn project_away(self, dist: Distance, theta: Angle) -> Pt2D {
assert!(dist >= Distance::ZERO);
let (sin, cos) = theta.normalized_radians().sin_cos();
Pt2D::new(
self.x() + dist.inner_meters() * cos,
self.y() + dist.inner_meters() * sin,
)
}
pub(crate) fn raw_dist_to(self, to: Pt2D) -> f64 {
((self.x() - to.x()).powi(2) + (self.y() - to.y()).powi(2)).sqrt()
}
pub fn dist_to(self, to: Pt2D) -> Distance {
Distance::meters(self.raw_dist_to(to))
}
pub fn fast_dist(self, other: Pt2D) -> NotNan<f64> {
NotNan::new((self.x() - other.x()).powi(2) + (self.y() - other.y()).powi(2)).unwrap()
}
pub fn angle_to(self, to: Pt2D) -> Angle {
Angle::new_rads((to.y() - self.y()).atan2(to.x() - self.x()))
}
pub fn offset(self, dx: f64, dy: f64) -> Pt2D {
Pt2D::new(self.x() + dx, self.y() + dy)
}
pub fn center(pts: &[Pt2D]) -> Pt2D {
if pts.is_empty() {
panic!("Can't find center of 0 points");
}
let mut x = 0.0;
let mut y = 0.0;
for pt in pts {
x += pt.x();
y += pt.y();
}
let len = pts.len() as f64;
Pt2D::new(x / len, y / len)
}
pub fn approx_dedupe(pts: Vec<Pt2D>, threshold: Distance) -> Vec<Pt2D> {
assert_ne!(threshold, EPSILON_DIST);
let mut result: Vec<Pt2D> = Vec::new();
for pt in pts {
if result.is_empty() || !result.last().unwrap().approx_eq(pt, threshold) {
result.push(pt);
}
}
result
}
pub fn to_hashable(self) -> HashablePt2D {
HashablePt2D {
x_nan: NotNan::new(self.x()).unwrap(),
y_nan: NotNan::new(self.y()).unwrap(),
}
}
}
impl fmt::Display for Pt2D {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Pt2D({0}, {1})", self.x(), self.y())
}
}
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)]
pub struct HashablePt2D {
x_nan: NotNan<f64>,
y_nan: NotNan<f64>,
}
impl HashablePt2D {
pub fn to_pt2d(self) -> Pt2D {
Pt2D::new(self.x_nan.into_inner(), self.y_nan.into_inner())
}
}
impl From<Pt2D> for geo::Coordinate<f64> {
fn from(pt: Pt2D) -> Self {
geo::Coordinate { x: pt.x, y: pt.y }
}
}
impl From<Pt2D> for geo::Point<f64> {
fn from(pt: Pt2D) -> Self {
geo::Point::new(pt.x, pt.y)
}
}
impl From<geo::Coordinate<f64>> for Pt2D {
fn from(coord: geo::Coordinate<f64>) -> Self {
Pt2D::new(coord.x, coord.y)
}
}
impl From<geo::Point<f64>> for Pt2D {
fn from(point: geo::Point<f64>) -> Self {
Pt2D::new(point.x(), point.y())
}
}