1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
use geom::{Angle, ArrowCap, Distance, PolyLine, Polygon, Pt2D, Ring};
use map_model::{Map, TurnType};
use sim::{CarID, CarStatus, DrawCarInput, VehicleType};
use widgetry::{Color, Drawable, GeomBatch, GfxCtx, Line, Prerender, Text};

use crate::colors::ColorScheme;
use crate::render::{DrawOptions, Renderable, OUTLINE_THICKNESS};
use crate::{AppLike, ID};

const CAR_WIDTH: Distance = Distance::const_meters(1.75);

pub struct DrawCar {
    pub id: CarID,
    body: PolyLine,
    body_polygon: Polygon,
    zorder: isize,

    draw_default: Drawable,
}

impl DrawCar {
    pub fn new(input: DrawCarInput, map: &Map, prerender: &Prerender, cs: &ColorScheme) -> DrawCar {
        let mut draw_default = GeomBatch::new();

        // Wheels
        for side in vec![
            input.body.shift_right(CAR_WIDTH / 2.0),
            input.body.shift_left(CAR_WIDTH / 2.0),
        ]
        .into_iter()
        .flatten()
        {
            let len = side.length();
            if len <= Distance::meters(2.0) {
                // The original body may be fine, but sometimes shifting drastically shortens the
                // length due to miter threshold chopping. Just give up on wheels in that case
                // instead of crashing.
                continue;
            }
            draw_default.push(
                cs.bike_frame,
                side.exact_slice(Distance::meters(0.5), Distance::meters(1.0))
                    .make_polygons(OUTLINE_THICKNESS / 2.0),
            );
            draw_default.push(
                cs.bike_frame,
                side.exact_slice(len - Distance::meters(2.0), len - Distance::meters(1.5))
                    .make_polygons(OUTLINE_THICKNESS / 2.0),
            );
        }

        let body_polygon = if input.body.length() < Distance::meters(1.1) {
            // Simpler shape while appearing from a border
            input.body.make_polygons(CAR_WIDTH)
        } else {
            let front_corner = input.body.length() - Distance::meters(1.0);
            let thick_line = input
                .body
                .exact_slice(Distance::ZERO, front_corner)
                .make_polygons(CAR_WIDTH);

            let (corner_pt, corner_angle) = input.body.must_dist_along(front_corner);
            let tip_pt = input.body.last_pt();
            let tip_angle = input.body.last_line().angle();
            let front = Ring::must_new(vec![
                corner_pt.project_away(CAR_WIDTH / 2.0, corner_angle.rotate_degs(90.0)),
                corner_pt.project_away(CAR_WIDTH / 2.0, corner_angle.rotate_degs(-90.0)),
                tip_pt.project_away(CAR_WIDTH / 4.0, tip_angle.rotate_degs(-90.0)),
                tip_pt.project_away(CAR_WIDTH / 4.0, tip_angle.rotate_degs(90.0)),
                corner_pt.project_away(CAR_WIDTH / 2.0, corner_angle.rotate_degs(90.0)),
            ])
            .to_polygon();
            front.union(thick_line)
        };

        draw_default.push(zoomed_color_car(&input, cs), body_polygon.clone());
        if input.status == CarStatus::Parked {
            draw_default.append(
                GeomBatch::load_svg(prerender, "system/assets/map/parked_car.svg")
                    .scale(0.01)
                    .centered_on(input.body.middle()),
            );
        }

        if input.show_parking_intent {
            // draw intent bubble
            let bubble_z = -0.0001;
            let mut bubble_batch =
                GeomBatch::load_svg(prerender, "system/assets/map/thought_bubble.svg")
                    .scale(0.05)
                    .centered_on(input.body.middle())
                    .translate(4.0, -4.0)
                    .set_z_offset(bubble_z);

            let intent_batch = GeomBatch::load_svg(prerender, "system/assets/map/parking.svg")
                .scale(0.015)
                .centered_on(input.body.middle())
                .translate(4.5, -4.5)
                .set_z_offset(bubble_z);

            bubble_batch.append(intent_batch);

            draw_default.append(bubble_batch);
        }

        // If the vehicle is temporarily too short for anything, just omit.
        if input.body.length() >= Distance::meters(2.5) {
            let arrow_len = 0.8 * CAR_WIDTH;
            let arrow_thickness = Distance::meters(0.5);

            if let Some(t) = input.waiting_for_turn {
                match map.get_t(t).turn_type {
                    TurnType::Left => {
                        let (pos, angle) = input
                            .body
                            .must_dist_along(input.body.length() - Distance::meters(2.5));

                        draw_default.push(
                            cs.turn_arrow,
                            PolyLine::must_new(vec![
                                pos.project_away(arrow_len / 2.0, angle.rotate_degs(90.0)),
                                pos.project_away(arrow_len / 2.0, angle.rotate_degs(-90.0)),
                            ])
                            .make_arrow(arrow_thickness, ArrowCap::Triangle),
                        );
                    }
                    TurnType::Right => {
                        let (pos, angle) = input
                            .body
                            .must_dist_along(input.body.length() - Distance::meters(2.5));

                        draw_default.push(
                            cs.turn_arrow,
                            PolyLine::must_new(vec![
                                pos.project_away(arrow_len / 2.0, angle.rotate_degs(-90.0)),
                                pos.project_away(arrow_len / 2.0, angle.rotate_degs(90.0)),
                            ])
                            .make_arrow(arrow_thickness, ArrowCap::Triangle),
                        );
                    }
                    TurnType::Straight => {}
                    TurnType::Crosswalk | TurnType::SharedSidewalkCorner => unreachable!(),
                }

                // Always draw the brake light
                let (pos, angle) = input.body.must_dist_along(Distance::meters(0.5));
                // TODO rounded
                let window_length_gap = Distance::meters(0.2);
                let window_thickness = Distance::meters(0.3);
                draw_default.push(
                    cs.brake_light,
                    thick_line_from_angle(
                        window_thickness,
                        CAR_WIDTH - window_length_gap * 2.0,
                        pos.project_away(
                            CAR_WIDTH / 2.0 - window_length_gap,
                            angle.rotate_degs(-90.0),
                        ),
                        angle.rotate_degs(90.0),
                    ),
                );
            }
        }

        if let Some(line) = input.label {
            // If the vehicle is temporarily too short, just skip the label.
            if let Ok((pt, angle)) = input
                .body
                .dist_along(input.body.length() - Distance::meters(3.5))
            {
                draw_default.append(
                    Text::from(Line(line).fg(cs.bus_label))
                        .render_to_batch(prerender)
                        .scale(0.07)
                        .centered_on(pt)
                        .rotate(angle.reorient()),
                );
            }
        }

        // TODO Technically some of the body may need to be at different zorders during
        // transitions, but that's way too much effort
        let zorder = input
            .partly_on
            .into_iter()
            .chain(vec![input.on])
            .map(|on| on.get_zorder(map))
            .max()
            .unwrap();
        DrawCar {
            id: input.id,
            body: input.body,
            body_polygon,
            zorder,
            draw_default: prerender.upload(draw_default),
        }
    }
}

impl Renderable for DrawCar {
    fn get_id(&self) -> ID {
        ID::Car(self.id)
    }

    fn draw(&self, g: &mut GfxCtx, _: &dyn AppLike, _: &DrawOptions) {
        g.redraw(&self.draw_default);
    }

    fn get_outline(&self, _: &Map) -> Polygon {
        self.body
            .to_thick_boundary(CAR_WIDTH, OUTLINE_THICKNESS)
            .unwrap_or_else(|| self.body_polygon.clone())
    }

    fn contains_pt(&self, pt: Pt2D, _: &Map) -> bool {
        self.body_polygon.contains_pt(pt)
    }

    fn get_zorder(&self) -> isize {
        self.zorder
    }
}

fn thick_line_from_angle(
    thickness: Distance,
    line_length: Distance,
    pt: Pt2D,
    angle: Angle,
) -> Polygon {
    let pt2 = pt.project_away(line_length, angle);
    // Shouldn't ever fail for a single line
    PolyLine::must_new(vec![pt, pt2]).make_polygons(thickness)
}

fn zoomed_color_car(input: &DrawCarInput, cs: &ColorScheme) -> Color {
    if input.id.1 == VehicleType::Bus {
        cs.bus_body
    } else if input.id.1 == VehicleType::Train {
        cs.train_body
    } else {
        match input.status {
            CarStatus::Moving => cs.rotating_color_agents(input.id.0),
            CarStatus::Parked => cs.parked_car,
        }
    }
}