1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
use std::collections::BTreeSet;
use petgraph::graphmap::DiGraphMap;
use crate::pathfind::driving::driving_cost;
use crate::pathfind::walking::{
one_step_walking_path, walking_cost, walking_path_to_steps, WalkingNode,
};
use crate::{LaneID, Map, Path, PathConstraints, PathRequest, PathStep, TurnID};
pub fn pathfind(req: PathRequest, map: &Map) -> Option<Path> {
if req.constraints == PathConstraints::Pedestrian {
if req.start.lane() == req.end.lane() {
return Some(one_step_walking_path(&req, map));
}
let steps = walking_path_to_steps(pathfind_walking(req.clone(), map)?, map);
return Some(Path::new(map, steps, req.end.dist_along(), Vec::new()));
}
let graph = build_graph_for_vehicles(map, req.constraints);
calc_path(graph, req, map)
}
pub fn build_graph_for_vehicles(
map: &Map,
constraints: PathConstraints,
) -> DiGraphMap<LaneID, TurnID> {
let mut graph: DiGraphMap<LaneID, TurnID> = DiGraphMap::new();
for l in map.all_lanes() {
if constraints.can_use(l, map) {
for turn in map.get_turns_for(l.id, constraints) {
graph.add_edge(turn.id.src, turn.id.dst, turn.id);
}
}
}
graph
}
pub fn pathfind_avoiding_lanes(
req: PathRequest,
avoid: BTreeSet<LaneID>,
map: &Map,
) -> Option<Path> {
assert_eq!(req.constraints, PathConstraints::Car);
let mut graph: DiGraphMap<LaneID, TurnID> = DiGraphMap::new();
for l in map.all_lanes() {
if req.constraints.can_use(l, map) && !avoid.contains(&l.id) {
for turn in map.get_turns_for(l.id, req.constraints) {
graph.add_edge(turn.id.src, turn.id.dst, turn.id);
}
}
}
calc_path(graph, req, map)
}
fn calc_path(graph: DiGraphMap<LaneID, TurnID>, req: PathRequest, map: &Map) -> Option<Path> {
let (_, path) = petgraph::algo::astar(
&graph,
req.start.lane(),
|l| l == req.end.lane(),
|(_, _, turn)| driving_cost(map.get_l(turn.src), map.get_t(*turn), req.constraints, map),
|_| 0.0,
)?;
let mut steps = Vec::new();
for pair in path.windows(2) {
steps.push(PathStep::Lane(pair[0]));
steps.push(PathStep::Turn(TurnID {
parent: map.get_l(pair[0]).dst_i,
src: pair[0],
dst: pair[1],
}));
}
steps.push(PathStep::Lane(req.end.lane()));
assert_eq!(steps[0], PathStep::Lane(req.start.lane()));
Some(Path::new(map, steps, req.end.dist_along(), Vec::new()))
}
pub fn build_graph_for_pedestrians(map: &Map) -> DiGraphMap<WalkingNode, usize> {
let mut graph: DiGraphMap<WalkingNode, usize> = DiGraphMap::new();
for l in map.all_lanes() {
if l.is_walkable() {
let cost = walking_cost(l.length());
let n1 = WalkingNode::SidewalkEndpoint(l.id, true);
let n2 = WalkingNode::SidewalkEndpoint(l.id, false);
graph.add_edge(n1, n2, cost);
graph.add_edge(n2, n1, cost);
for turn in map.get_turns_for(l.id, PathConstraints::Pedestrian) {
graph.add_edge(
WalkingNode::SidewalkEndpoint(l.id, l.dst_i == turn.id.parent),
WalkingNode::SidewalkEndpoint(
turn.id.dst,
map.get_l(turn.id.dst).dst_i == turn.id.parent,
),
walking_cost(turn.geom.length()),
);
}
}
}
graph
}
fn pathfind_walking(req: PathRequest, map: &Map) -> Option<Vec<WalkingNode>> {
let graph = build_graph_for_pedestrians(map);
let closest_start = WalkingNode::closest(req.start, map);
let closest_end = WalkingNode::closest(req.end, map);
let (_, path) = petgraph::algo::astar(
&graph,
closest_start,
|end| end == closest_end,
|(_, _, cost)| *cost,
|_| 0,
)?;
Some(path)
}