use std::collections::{BTreeSet, VecDeque};
use std::fmt;
use enumset::EnumSetType;
use serde::{Deserialize, Serialize};
use abstutil::Timer;
use geom::{Distance, PolyLine, EPSILON_DIST};
pub use self::ch::ContractionHierarchyPathfinder;
pub use self::dijkstra::{build_graph_for_pedestrians, build_graph_for_vehicles};
pub use self::driving::driving_cost;
pub use self::walking::{walking_cost, WalkingNode};
use crate::{
osm, BusRouteID, BusStopID, Lane, LaneID, LaneType, Map, Position, Traversable, TurnID,
UberTurn,
};
mod ch;
mod dijkstra;
mod driving;
mod node_map;
pub mod uber_turns;
mod walking;
#[derive(Debug, Clone, Copy, Serialize, Deserialize, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum PathStep {
Lane(LaneID),
ContraflowLane(LaneID),
Turn(TurnID),
}
impl PathStep {
pub fn as_traversable(&self) -> Traversable {
match self {
PathStep::Lane(id) => Traversable::Lane(*id),
PathStep::ContraflowLane(id) => Traversable::Lane(*id),
PathStep::Turn(id) => Traversable::Turn(*id),
}
}
pub fn as_lane(&self) -> LaneID {
self.as_traversable().as_lane()
}
pub fn as_turn(&self) -> TurnID {
self.as_traversable().as_turn()
}
fn slice(
&self,
map: &Map,
start: Distance,
dist_ahead: Option<Distance>,
) -> Result<(PolyLine, Distance), String> {
if let Some(d) = dist_ahead {
if d < Distance::ZERO {
panic!("Negative dist_ahead?! {}", d);
}
if d == Distance::ZERO {
return Err(format!("0 dist ahead for slice"));
}
}
match self {
PathStep::Lane(id) => {
let pts = &map.get_l(*id).lane_center_pts;
if let Some(d) = dist_ahead {
pts.slice(start, start + d)
} else {
pts.slice(start, pts.length())
}
}
PathStep::ContraflowLane(id) => {
let pts = map.get_l(*id).lane_center_pts.reversed();
let reversed_start = pts.length() - start;
if let Some(d) = dist_ahead {
pts.slice(reversed_start, reversed_start + d)
} else {
pts.slice(reversed_start, pts.length())
}
}
PathStep::Turn(id) => {
let pts = &map.get_t(*id).geom;
if let Some(d) = dist_ahead {
pts.slice(start, start + d)
} else {
pts.slice(start, pts.length())
}
}
}
}
}
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
pub struct Path {
steps: VecDeque<PathStep>,
end_dist: Distance,
total_length: Distance,
crossed_so_far: Distance,
total_lanes: usize,
uber_turns: VecDeque<UberTurn>,
currently_inside_ut: Option<UberTurn>,
}
impl Path {
pub(crate) fn new(
map: &Map,
steps: Vec<PathStep>,
end_dist: Distance,
uber_turns: Vec<UberTurn>,
) -> Path {
if false {
validate_continuity(map, &steps);
}
if false {
validate_restrictions(map, &steps);
}
let mut total_length = Distance::ZERO;
let mut total_lanes = 0;
for s in &steps {
total_length += s.as_traversable().length(map);
match s {
PathStep::Lane(_) | PathStep::ContraflowLane(_) => total_lanes += 1,
_ => {}
}
}
Path {
steps: VecDeque::from(steps),
end_dist,
total_length,
crossed_so_far: Distance::ZERO,
total_lanes,
uber_turns: uber_turns.into_iter().collect(),
currently_inside_ut: None,
}
}
pub fn one_step(l: LaneID, map: &Map) -> Path {
Path::new(
map,
vec![PathStep::Lane(l)],
map.get_l(l).length(),
Vec::new(),
)
}
pub fn dummy() -> Path {
Path {
steps: VecDeque::new(),
end_dist: Distance::ZERO,
total_length: Distance::ZERO,
crossed_so_far: Distance::ZERO,
total_lanes: 0,
uber_turns: VecDeque::new(),
currently_inside_ut: None,
}
}
pub fn total_lanes(&self) -> usize {
self.total_lanes
}
pub fn crossed_so_far(&self) -> Distance {
self.crossed_so_far
}
pub fn total_length(&self) -> Distance {
self.total_length
}
pub fn percent_dist_crossed(&self) -> f64 {
if self.total_length == Distance::ZERO {
return 1.0;
}
self.crossed_so_far / self.total_length
}
pub fn is_empty(&self) -> bool {
self.steps.is_empty()
}
pub fn is_last_step(&self) -> bool {
self.steps.len() == 1
}
pub fn isnt_last_step(&self) -> bool {
self.steps.len() > 1
}
pub fn currently_inside_ut(&self) -> &Option<UberTurn> {
&self.currently_inside_ut
}
pub fn about_to_start_ut(&self) -> Option<&UberTurn> {
if self.steps.len() < 2 || self.uber_turns.is_empty() {
return None;
}
if let PathStep::Turn(t) = self.steps[1] {
if self.uber_turns[0].path[0] == t {
return Some(&self.uber_turns[0]);
}
}
None
}
pub fn shift(&mut self, map: &Map) -> PathStep {
let step = self.steps.pop_front().unwrap();
self.crossed_so_far += step.as_traversable().length(map);
if let Some(ref ut) = self.currently_inside_ut {
if step == PathStep::Turn(*ut.path.last().unwrap()) {
self.currently_inside_ut = None;
}
} else if !self.steps.is_empty() && !self.uber_turns.is_empty() {
if self.steps[0] == PathStep::Turn(self.uber_turns[0].path[0]) {
self.currently_inside_ut = Some(self.uber_turns.pop_front().unwrap());
}
}
if self.steps.len() == 1 {
assert!(self.uber_turns.is_empty());
assert!(self.currently_inside_ut.is_none());
}
step
}
pub fn add(&mut self, step: PathStep, map: &Map) {
self.total_length += step.as_traversable().length(map);
match step {
PathStep::Lane(_) | PathStep::ContraflowLane(_) => self.total_lanes += 1,
_ => {}
};
self.steps.push_back(step);
}
pub fn approaching_uber_turn(&self) -> bool {
if self.steps.len() < 5 || self.uber_turns.is_empty() {
return false;
}
if let PathStep::Turn(t) = self.steps[1] {
if self.uber_turns[0].path[0] == t {
return true;
}
}
if let PathStep::Turn(t) = self.steps[3] {
if self.uber_turns[0].path[0] == t {
return true;
}
}
false
}
pub fn modify_step(&mut self, idx: usize, step: PathStep, map: &Map) {
assert!(self.currently_inside_ut.is_none());
assert!(idx != 0);
self.total_length -= self.steps[idx].as_traversable().length(map);
self.steps[idx] = step;
self.total_length += self.steps[idx].as_traversable().length(map);
if self.total_length < Distance::ZERO {
panic!(
"modify_step broke total_length, it's now {}",
self.total_length
);
}
}
pub fn current_step(&self) -> PathStep {
self.steps[0]
}
pub fn next_step(&self) -> PathStep {
self.steps[1]
}
pub fn maybe_next_step(&self) -> Option<PathStep> {
if self.is_last_step() {
None
} else {
Some(self.next_step())
}
}
pub fn last_step(&self) -> PathStep {
self.steps[self.steps.len() - 1]
}
pub fn trace(
&self,
map: &Map,
start_dist: Distance,
dist_ahead: Option<Distance>,
) -> Option<PolyLine> {
let mut pts_so_far: Option<PolyLine> = None;
let mut dist_remaining = dist_ahead;
if self.steps.len() == 1 {
let dist = if start_dist < self.end_dist {
self.end_dist - start_dist
} else {
start_dist - self.end_dist
};
if let Some(d) = dist_remaining {
if dist < d {
dist_remaining = Some(dist);
}
} else {
dist_remaining = Some(dist);
}
}
if let Ok((pts, dist)) = self.steps[0].slice(map, start_dist, dist_remaining) {
pts_so_far = Some(pts);
if dist_remaining.is_some() {
dist_remaining = Some(dist);
}
}
if self.steps.len() == 1 {
return pts_so_far;
}
for i in 1..self.steps.len() {
if let Some(d) = dist_remaining {
if d <= Distance::ZERO {
return Some(pts_so_far.unwrap());
}
}
if i == self.steps.len() - 1 {
let end_dist = match self.steps[i] {
PathStep::ContraflowLane(l) => {
map.get_l(l).lane_center_pts.reversed().length() - self.end_dist
}
_ => self.end_dist,
};
if let Some(d) = dist_remaining {
if end_dist < d {
dist_remaining = Some(end_dist);
}
} else {
dist_remaining = Some(end_dist);
}
}
let start_dist_this_step = match self.steps[i] {
PathStep::ContraflowLane(l) => map.get_l(l).lane_center_pts.reversed().length(),
_ => Distance::ZERO,
};
if let Ok((new_pts, dist)) =
self.steps[i].slice(map, start_dist_this_step, dist_remaining)
{
if pts_so_far.is_some() {
match pts_so_far.unwrap().extend(new_pts) {
Ok(new) => {
pts_so_far = Some(new);
}
Err(err) => {
println!("WARNING: Couldn't trace some path: {}", err);
return None;
}
}
} else {
pts_so_far = Some(new_pts);
}
if dist_remaining.is_some() {
dist_remaining = Some(dist);
}
}
}
Some(pts_so_far.unwrap())
}
pub fn get_steps(&self) -> &VecDeque<PathStep> {
&self.steps
}
fn append(&mut self, other: Path, map: &Map) {
assert!(self.currently_inside_ut.is_none());
assert!(other.currently_inside_ut.is_none());
let turn = match (*self.steps.back().unwrap(), other.steps[0]) {
(PathStep::Lane(src), PathStep::Lane(dst)) => TurnID {
parent: map.get_l(src).dst_i,
src,
dst,
},
_ => unreachable!(),
};
self.steps.push_back(PathStep::Turn(turn));
self.total_length += map.get_t(turn).geom.length();
self.steps.extend(other.steps);
self.total_length += other.total_length;
self.total_lanes += other.total_lanes;
self.uber_turns.extend(other.uber_turns);
}
}
#[derive(Debug, Serialize, Deserialize, PartialOrd, Ord, EnumSetType)]
pub enum PathConstraints {
Pedestrian,
Car,
Bike,
Bus,
Train,
}
impl PathConstraints {
pub fn all() -> Vec<PathConstraints> {
vec![
PathConstraints::Pedestrian,
PathConstraints::Car,
PathConstraints::Bike,
PathConstraints::Bus,
PathConstraints::Train,
]
}
pub fn from_lt(lt: LaneType) -> PathConstraints {
match lt {
LaneType::Sidewalk | LaneType::Shoulder => PathConstraints::Pedestrian,
LaneType::Driving => PathConstraints::Car,
LaneType::Biking => PathConstraints::Bike,
LaneType::Bus => PathConstraints::Bus,
LaneType::LightRail => PathConstraints::Train,
_ => panic!("PathConstraints::from_lt({:?}) doesn't make sense", lt),
}
}
pub fn can_use(self, l: &Lane, map: &Map) -> bool {
match self {
PathConstraints::Pedestrian => l.is_walkable(),
PathConstraints::Car => l.is_driving(),
PathConstraints::Bike => {
if l.is_biking() {
true
} else if l.is_driving() || (l.is_bus() && map.config.bikes_can_use_bus_lanes) {
let road = map.get_r(l.parent);
!road.osm_tags.is("bicycle", "no")
&& !road
.osm_tags
.is_any(osm::HIGHWAY, vec!["motorway", "motorway_link"])
} else {
false
}
}
PathConstraints::Bus => l.is_driving() || l.is_bus(),
PathConstraints::Train => l.is_light_rail(),
}
}
pub(crate) fn filter_lanes(self, mut choices: Vec<LaneID>, map: &Map) -> Vec<LaneID> {
choices.retain(|l| self.can_use(map.get_l(*l), map));
if self == PathConstraints::Bike {
let just_bike_lanes: Vec<LaneID> = choices
.iter()
.copied()
.filter(|l| map.get_l(*l).is_biking())
.collect();
if !just_bike_lanes.is_empty() {
return just_bike_lanes;
}
}
choices
}
}
#[derive(Debug, PartialEq, Eq, Clone, Serialize, Deserialize)]
pub struct PathRequest {
pub start: Position,
pub end: Position,
pub constraints: PathConstraints,
}
impl fmt::Display for PathRequest {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"PathRequest({} along {}... to {} along {} for {:?})",
self.start.dist_along(),
self.start.lane(),
self.end.dist_along(),
self.end.lane(),
self.constraints,
)
}
}
fn validate_continuity(map: &Map, steps: &Vec<PathStep>) {
if steps.is_empty() {
panic!("Empty path");
}
for pair in steps.windows(2) {
let from = match pair[0] {
PathStep::Lane(id) => map.get_l(id).last_pt(),
PathStep::ContraflowLane(id) => map.get_l(id).first_pt(),
PathStep::Turn(id) => map.get_t(id).geom.last_pt(),
};
let to = match pair[1] {
PathStep::Lane(id) => map.get_l(id).first_pt(),
PathStep::ContraflowLane(id) => map.get_l(id).last_pt(),
PathStep::Turn(id) => map.get_t(id).geom.first_pt(),
};
let len = from.dist_to(to);
if len > EPSILON_DIST {
println!("All steps in invalid path:");
for s in steps {
match s {
PathStep::Lane(l) => println!(
" {:?} from {} to {}",
s,
map.get_l(*l).src_i,
map.get_l(*l).dst_i
),
PathStep::ContraflowLane(l) => println!(
" {:?} from {} to {}",
s,
map.get_l(*l).dst_i,
map.get_l(*l).src_i
),
PathStep::Turn(_) => println!(" {:?}", s),
}
}
panic!(
"pathfind() returned path that warps {} from {:?} to {:?}",
len, pair[0], pair[1]
);
}
}
}
fn validate_restrictions(map: &Map, steps: &Vec<PathStep>) {
for triple in steps.windows(5) {
if let (PathStep::Lane(l1), PathStep::Lane(l2), PathStep::Lane(l3)) =
(triple[0], triple[2], triple[4])
{
let from = map.get_parent(l1);
let via = map.get_l(l2).parent;
let to = map.get_l(l3).parent;
for (dont_via, dont_to) in &from.complicated_turn_restrictions {
if via == *dont_via && to == *dont_to {
panic!(
"Some path does illegal uber-turn: {} -> {} -> {}",
l1, l2, l3
);
}
}
}
}
}
#[derive(Serialize, Deserialize)]
pub enum Pathfinder {
Dijkstra,
CH(ContractionHierarchyPathfinder),
}
impl Pathfinder {
pub fn pathfind(&self, req: PathRequest, map: &Map) -> Option<Path> {
match self {
Pathfinder::Dijkstra => dijkstra::pathfind(req, map),
Pathfinder::CH(ref p) => p.pathfind(req, map),
}
}
pub fn pathfind_avoiding_lanes(
&self,
req: PathRequest,
avoid: BTreeSet<LaneID>,
map: &Map,
) -> Option<Path> {
dijkstra::pathfind_avoiding_lanes(req, avoid, map)
}
pub fn should_use_transit(
&self,
map: &Map,
start: Position,
end: Position,
) -> Option<(BusStopID, Option<BusStopID>, BusRouteID)> {
match self {
Pathfinder::Dijkstra => None,
Pathfinder::CH(ref p) => p.should_use_transit(map, start, end),
}
}
pub fn apply_edits(&mut self, map: &Map, timer: &mut Timer) {
match self {
Pathfinder::Dijkstra => {}
Pathfinder::CH(ref mut p) => p.apply_edits(map, timer),
}
}
}