1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
use std::fmt;

use serde::{Deserialize, Serialize};

/// An angle, stored in radians.
#[derive(Clone, Copy, Debug, Serialize, Deserialize, PartialEq, PartialOrd)]
pub struct Angle(f64);

impl Angle {
    pub const ZERO: Angle = Angle(0.0);

    /// Create an angle in radians.
    // TODO Normalize here, and be careful about % vs euclid_rem
    pub fn new_rads(rads: f64) -> Angle {
        // Retain more precision for angles...
        Angle((rads * 10_000_000.0).round() / 10_000_000.0)
    }

    /// Create an angle in degrees.
    pub fn degrees(degs: f64) -> Angle {
        Angle::new_rads(degs.to_radians())
    }

    /// Invert the direction of this angle.
    pub fn opposite(self) -> Angle {
        Angle::new_rads(self.0 + std::f64::consts::PI)
    }

    pub(crate) fn invert_y(self) -> Angle {
        Angle::new_rads(2.0 * std::f64::consts::PI - self.0)
    }

    /// Rotates this angle by some degrees.
    pub fn rotate_degs(self, degrees: f64) -> Angle {
        Angle::new_rads(self.0 + degrees.to_radians())
    }

    /// Returns [0, 2pi)
    pub fn normalized_radians(self) -> f64 {
        if self.0 < 0.0 {
            // TODO Be more careful about how we store the angle, to make sure this works
            self.0 + (2.0 * std::f64::consts::PI)
        } else {
            self.0
        }
    }

    /// Returns [0, 360)
    pub fn normalized_degrees(self) -> f64 {
        self.normalized_radians().to_degrees()
    }

    /// Returns [-180, 180]
    pub fn simple_shortest_rotation_towards(self, other: Angle) -> f64 {
        // https://math.stackexchange.com/questions/110080/shortest-way-to-achieve-target-angle
        ((self.normalized_degrees() - other.normalized_degrees() + 540.0) % 360.0) - 180.0
    }

    /// Logically this returns [-180, 180], but keep in mind when we print this angle, it'll
    /// normalize to be [0, 360].
    pub fn shortest_rotation_towards(self, other: Angle) -> Angle {
        Angle::degrees(self.simple_shortest_rotation_towards(other))
    }

    /// True if this angle is within some degrees of another, accounting for rotation
    pub fn approx_eq(self, other: Angle, within_degrees: f64) -> bool {
        self.simple_shortest_rotation_towards(other).abs() < within_degrees
    }

    /// I don't know how to describe what this does. Use for rotating labels in map-space and making
    /// sure the text is never upside-down.
    pub fn reorient(self) -> Angle {
        let theta = self.normalized_degrees().rem_euclid(360.0);
        let mut result = self;
        if theta > 90.0 {
            result = result.opposite();
        }
        if theta > 270.0 {
            result = result.opposite();
        }
        result
    }

    /// Calculates the average of some angles.
    pub fn average(input: Vec<Angle>) -> Angle {
        // Thanks https://rosettacode.org/wiki/Averages/Mean_angle
        let num = input.len() as f64;
        let mut cos_sum = 0.0;
        let mut sin_sum = 0.0;
        for x in input {
            cos_sum += x.0.cos();
            sin_sum += x.0.sin();
        }
        Angle::new_rads((sin_sum / num).atan2(cos_sum / num))
    }
}

impl fmt::Display for Angle {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Angle({} degrees)", self.normalized_degrees())
    }
}

impl std::ops::Add for Angle {
    type Output = Angle;

    fn add(self, other: Angle) -> Angle {
        Angle::new_rads(self.0 + other.0)
    }
}

impl std::ops::Neg for Angle {
    type Output = Angle;

    fn neg(self) -> Angle {
        Angle::new_rads(-self.0)
    }
}