1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
use std::collections::HashMap;

use geom::{Bounds, Duration, Histogram, Polygon, Pt2D, Statistic};
use map_model::{BuildingID, Map};
use widgetry::{
    Choice, Color, EventCtx, GeomBatch, Panel, RoundedF64, Spinner, TextExt, Toggle, Widget,
};

use crate::tools::{ColorLegend, ColorScale};

const NEIGHBORS: [[isize; 2]; 9] = [
    [0, 0],
    [-1, 1],
    [-1, 0],
    [-1, -1],
    [0, -1],
    [1, -1],
    [1, 0],
    [1, 1],
    [0, 1],
];

#[derive(Clone, PartialEq)]
pub struct HeatmapOptions {
    // In meters
    resolution: f64,
    radius: f64,
    smoothing: bool,
    contours: bool,
    color_scheme: String,
}

impl HeatmapOptions {
    pub fn new() -> HeatmapOptions {
        HeatmapOptions {
            resolution: 10.0,
            radius: 3.0,
            smoothing: true,
            contours: true,
            color_scheme: "Turbo".to_string(),
        }
    }

    pub fn to_controls(&self, ctx: &mut EventCtx, legend: Widget) -> Vec<Widget> {
        vec![
            // TODO Display the value...
            Widget::row(vec![
                "Resolution (meters)".text_widget(ctx).centered_vert(),
                Spinner::f64_widget(ctx, "resolution", (1.0, 100.0), self.resolution, 1.0)
                    .align_right(),
            ]),
            Widget::row(vec![
                "Radius (resolution multiplier)"
                    .text_widget(ctx)
                    .centered_vert(),
                Spinner::f64_widget(ctx, "radius", (0.0, 10.0), self.radius, 1.0).align_right(),
            ]),
            Toggle::switch(ctx, "smoothing", None, self.smoothing),
            Toggle::switch(ctx, "contours", None, self.contours),
            Widget::row(vec![
                "Color scheme".text_widget(ctx).centered_vert(),
                Widget::dropdown(
                    ctx,
                    "Color scheme",
                    self.color_scheme.clone(),
                    vec!["Turbo", "Inferno", "Warm", "Cool", "Oranges", "Spectral"]
                        .into_iter()
                        .map(Choice::string)
                        .collect(),
                ),
            ]),
            legend,
        ]
    }

    pub fn from_controls(c: &Panel) -> HeatmapOptions {
        // Did we just change?
        if c.has_widget("resolution") {
            HeatmapOptions {
                resolution: c.spinner::<RoundedF64>("resolution").0,
                radius: c.spinner::<RoundedF64>("radius").0,
                smoothing: c.is_checked("smoothing"),
                contours: c.is_checked("contours"),
                color_scheme: c.dropdown_value("Color scheme"),
            }
        } else {
            HeatmapOptions::new()
        }
    }
}

// Returns a legend
pub fn make_heatmap(
    ctx: &mut EventCtx,
    batch: &mut GeomBatch,
    bounds: &Bounds,
    pts: Vec<Pt2D>,
    opts: &HeatmapOptions,
) -> Widget {
    // 7 colors, 8 labels
    let num_colors = 7;
    let gradient = match opts.color_scheme.as_ref() {
        "Turbo" => colorous::TURBO,
        "Inferno" => colorous::INFERNO,
        "Warm" => colorous::WARM,
        "Cool" => colorous::COOL,
        "Oranges" => colorous::ORANGES,
        "Spectral" => colorous::SPECTRAL,
        _ => unreachable!(),
    };
    let colors: Vec<Color> = (0..num_colors)
        .map(|i| {
            let c = gradient.eval_rational(i, num_colors);
            Color::rgb(c.r as usize, c.g as usize, c.b as usize)
        })
        .collect();

    if pts.is_empty() {
        let labels = std::iter::repeat("0".to_string())
            .take(num_colors + 1)
            .collect();
        return ColorLegend::gradient(ctx, &ColorScale(colors), labels);
    }

    // At each point, add a 2D Gaussian kernel centered at the point.
    let mut raw_grid: Grid<f64> = Grid::new(
        (bounds.width() / opts.resolution).ceil() as usize,
        (bounds.height() / opts.resolution).ceil() as usize,
        0.0,
    );
    for pt in pts {
        let base_x = ((pt.x() - bounds.min_x) / opts.resolution) as isize;
        let base_y = ((pt.y() - bounds.min_y) / opts.resolution) as isize;
        let denom = 2.0 * (opts.radius / 2.0).powi(2);

        let r = opts.radius as isize;
        for x in base_x - r..=base_x + r {
            for y in base_y - r..=base_y + r {
                let loc_r2 = (x - base_x).pow(2) + (y - base_y).pow(2);
                if x > 0
                    && y > 0
                    && x < (raw_grid.width as isize)
                    && y < (raw_grid.height as isize)
                    && loc_r2 <= r * r
                {
                    // https://en.wikipedia.org/wiki/Gaussian_function#Two-dimensional_Gaussian_function
                    let value = (-(((x - base_x) as f64).powi(2) / denom
                        + ((y - base_y) as f64).powi(2) / denom))
                        .exp();
                    let idx = raw_grid.idx(x as usize, y as usize);
                    raw_grid.data[idx] += value;
                }
            }
        }
    }

    let mut grid: Grid<f64> = Grid::new(
        (bounds.width() / opts.resolution).ceil() as usize,
        (bounds.height() / opts.resolution).ceil() as usize,
        0.0,
    );
    if opts.smoothing {
        for y in 0..raw_grid.height {
            for x in 0..raw_grid.width {
                let mut div = 1;
                let idx = grid.idx(x, y);
                grid.data[idx] = raw_grid.data[idx];
                for offset in &NEIGHBORS {
                    let next_x = x as isize + offset[0];
                    let next_y = y as isize + offset[1];
                    if next_x > 0
                        && next_y > 0
                        && next_x < (raw_grid.width as isize)
                        && next_y < (raw_grid.height as isize)
                    {
                        div += 1;
                        let next_idx = grid.idx(next_x as usize, next_y as usize);
                        grid.data[idx] += raw_grid.data[next_idx];
                    }
                }
                grid.data[idx] /= div as f64;
            }
        }
    } else {
        grid = raw_grid;
    }

    let mut distrib = Histogram::new();
    for count in &grid.data {
        // TODO Just truncate the decimal?
        distrib.add(*count as usize);
    }

    if opts.contours {
        let max = distrib.select(Statistic::Max).unwrap() as f64;
        let mut thresholds: Vec<f64> = (0..=5).map(|i| (i as f64) / 5.0 * max).collect();
        // Skip 0; it'll cover the entire map. But have a low value to distinguish
        // nothing/something.
        thresholds[0] = 0.1;
        let c = contour::ContourBuilder::new(grid.width as u32, grid.height as u32, false);
        for (feature, value) in c
            .contours(&grid.data, &thresholds)
            .unwrap()
            .into_iter()
            .zip(thresholds)
        {
            // TODO We should technically not depend on the order of features matching the input
            // thresholds, but extracting geojson values doesn't sound fun
            match feature.geometry.unwrap().value {
                geojson::Value::MultiPolygon(polygons) => {
                    let c = gradient.eval_continuous(value / max);
                    // Don't block the map underneath
                    let color = Color::rgb(c.r as usize, c.g as usize, c.b as usize).alpha(0.6);
                    for p in polygons {
                        if let Ok(poly) = Polygon::from_geojson(&p) {
                            batch.push(color, poly.scale(opts.resolution));
                        }
                    }
                }
                _ => unreachable!(),
            }
        }
    } else {
        // Now draw rectangles
        let square = Polygon::rectangle(opts.resolution, opts.resolution);
        for y in 0..grid.height {
            for x in 0..grid.width {
                let count = grid.data[grid.idx(x, y)];
                if count > 0.0 {
                    let pct = (count as f64) / (distrib.select(Statistic::Max).unwrap() as f64);
                    let c = gradient.eval_continuous(pct);
                    // Don't block the map underneath
                    let color = Color::rgb(c.r as usize, c.g as usize, c.b as usize).alpha(0.6);
                    batch.push(
                        color,
                        square
                            .translate((x as f64) * opts.resolution, (y as f64) * opts.resolution),
                    );
                }
            }
        }
    }

    let mut labels = vec!["0".to_string()];
    for i in 1..=num_colors {
        let pct = (i as f64) / (num_colors as f64);
        labels.push(
            (pct * (distrib.select(Statistic::Max).unwrap() as f64))
                .round()
                .to_string(),
        );
    }
    ColorLegend::gradient(ctx, &ColorScale(colors), labels)
}

/// A 2D grid containing some arbitrary data.
pub struct Grid<T> {
    /// Logically represents a 2D vector. Row-major ordering.
    pub data: Vec<T>,
    pub width: usize,
    pub height: usize,
}

impl<T: Copy> Grid<T> {
    pub fn new(width: usize, height: usize, default: T) -> Grid<T> {
        Grid {
            data: std::iter::repeat(default).take(width * height).collect(),
            width,
            height,
        }
    }

    /// Calculate the index from a given (x, y). Doesn't do any bounds checking.
    pub fn idx(&self, x: usize, y: usize) -> usize {
        y * self.width + x
    }

    /// The inverse of `idx`. No bounds checking.
    pub fn xy(&self, idx: usize) -> (usize, usize) {
        let y = idx / self.width;
        let x = idx % self.width;
        (x, y)
    }

    /// From one tile, calculate the 4 orthogonal neighbors. Includes bounds checking.
    pub fn orthogonal_neighbors(&self, center_x: usize, center_y: usize) -> Vec<(usize, usize)> {
        let center_x = center_x as isize;
        let center_y = center_y as isize;
        let mut results = Vec::new();
        for (dx, dy) in [(-1, 0), (0, -1), (0, 1), (1, 0)] {
            let x = center_x + dx;
            let y = center_y + dy;
            if x < 0 || (x as usize) >= self.width || y < 0 || (y as usize) >= self.height {
                continue;
            }
            results.push((x as usize, y as usize));
        }
        results
    }
}

// TODO Refactor the variations of this.
/// Thresholds are Durations, in units of seconds
pub fn draw_isochrone(
    map: &Map,
    time_to_reach_building: &HashMap<BuildingID, Duration>,
    thresholds: &[f64],
    colors: &[Color],
) -> GeomBatch {
    // To generate the polygons covering areas between 0-5 mins, 5-10 mins, etc, we have to feed
    // in a 2D grid of costs. Use a 100x100 meter resolution.
    let bounds = map.get_bounds();
    let resolution_m = 100.0;
    // The costs we're storing are currenly durations, but the contour crate needs f64, so
    // just store the number of seconds.
    let mut grid: Grid<f64> = Grid::new(
        (bounds.width() / resolution_m).ceil() as usize,
        (bounds.height() / resolution_m).ceil() as usize,
        0.0,
    );

    for (b, cost) in time_to_reach_building {
        // What grid cell does the building belong to?
        let pt = map.get_b(*b).polygon.center();
        let idx = grid.idx(
            ((pt.x() - bounds.min_x) / resolution_m) as usize,
            ((pt.y() - bounds.min_y) / resolution_m) as usize,
        );
        // Don't add! If two buildings map to the same cell, we should pick a finer resolution.
        grid.data[idx] = cost.inner_seconds();
    }

    let smooth = false;
    let c = contour::ContourBuilder::new(grid.width as u32, grid.height as u32, smooth);
    let mut batch = GeomBatch::new();
    // The last feature returned will be larger than the last threshold value. We don't want to
    // display that at all. zip() will omit this last pair, since colors.len() ==
    // thresholds.len() - 1.
    //
    // TODO Actually, this still isn't working. I think each polygon is everything > the
    // threshold, not everything between two thresholds?
    for (feature, color) in c
        .contours(&grid.data, thresholds)
        .unwrap()
        .into_iter()
        .zip(colors)
    {
        match feature.geometry.unwrap().value {
            geojson::Value::MultiPolygon(polygons) => {
                for p in polygons {
                    if let Ok(poly) = Polygon::from_geojson(&p) {
                        batch.push(*color, poly.scale(resolution_m));
                    }
                }
            }
            _ => unreachable!(),
        }
    }

    batch
}