1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
use std::cell::RefCell;

use geom::{Angle, ArrowCap, Distance, Line, PolyLine, Polygon, Pt2D, Ring, Time, EPSILON_DIST};
use map_model::{
    Direction, DrivingSide, Intersection, IntersectionID, IntersectionType, LaneType, Map, Road,
    RoadWithStopSign, Turn, TurnType, SIDEWALK_THICKNESS,
};
use widgetry::{Color, Drawable, GeomBatch, GfxCtx, Prerender, RewriteColor, Text};

use crate::colors::ColorScheme;
use crate::render::{
    traffic_signal, DrawOptions, Renderable, CROSSWALK_LINE_THICKNESS, OUTLINE_THICKNESS,
};
use crate::{AppLike, ID};

pub struct DrawIntersection {
    pub id: IntersectionID,
    zorder: isize,

    draw_default: RefCell<Option<Drawable>>,
    pub draw_traffic_signal: RefCell<Option<(Time, Drawable)>>,
}

impl DrawIntersection {
    pub fn new(i: &Intersection, map: &Map) -> DrawIntersection {
        DrawIntersection {
            id: i.id,
            zorder: i.get_zorder(map),
            draw_default: RefCell::new(None),
            draw_traffic_signal: RefCell::new(None),
        }
    }

    pub fn render<P: AsRef<Prerender>>(&self, prerender: &P, app: &dyn AppLike) -> GeomBatch {
        let map = app.map();
        let i = map.get_i(self.id);

        // Order matters... main polygon first, then sidewalk corners.
        let mut default_geom = GeomBatch::new();
        let rank = i.get_rank(map);
        default_geom.push(
            if i.is_footway(map) {
                app.cs().zoomed_road_surface(LaneType::Sidewalk, rank)
            } else {
                app.cs().zoomed_intersection_surface(rank)
            },
            i.polygon.clone(),
        );
        if app.cs().sidewalk_lines.is_some() {
            default_geom.extend(
                app.cs().zoomed_road_surface(LaneType::Sidewalk, rank),
                calculate_corners(i, map),
            );
        } else {
            calculate_corners_with_borders(&mut default_geom, app, i);
        }

        for turn in map.get_turns_in_intersection(i.id) {
            // Avoid double-rendering
            if turn.turn_type == TurnType::Crosswalk
                && !turn.other_crosswalk_ids.iter().any(|id| *id < turn.id)
            {
                make_crosswalk(&mut default_geom, turn, map, app.cs());
            }
        }

        if i.is_private(map) {
            default_geom.push(app.cs().private_road.alpha(0.5), i.polygon.clone());
        }

        match i.intersection_type {
            IntersectionType::Border => {
                let r = map.get_r(*i.roads.iter().next().unwrap());
                default_geom.extend(
                    app.cs().road_center_line(r.get_rank()),
                    calculate_border_arrows(i, r, map),
                );
            }
            IntersectionType::StopSign => {
                for ss in map.get_stop_sign(i.id).roads.values() {
                    if ss.must_stop {
                        if let Some((octagon, pole, angle)) =
                            DrawIntersection::stop_sign_geom(ss, map)
                        {
                            let center = octagon.center();
                            default_geom.push(app.cs().stop_sign, octagon);
                            default_geom.push(app.cs().stop_sign_pole, pole);

                            // Trial and error to make the scale and angle work. We could also make
                            // a fixed SVG asset and just rotate it, but we'd still need to
                            // calculate the octagon hitbox for the stop sign editor.
                            default_geom.append(
                                Text::from(widgetry::Line("STOP").small_heading().fg(Color::WHITE))
                                    .render_autocropped(prerender.as_ref())
                                    .scale(0.02)
                                    .centered_on(center)
                                    .rotate(angle.opposite().rotate_degs(-90.0)),
                            );
                        }
                    }
                }
            }
            IntersectionType::Construction => {
                // TODO Centering seems weird
                default_geom.append(
                    GeomBatch::load_svg(prerender, "system/assets/map/under_construction.svg")
                        .scale(0.08)
                        .centered_on(i.polygon.center()),
                );
            }
            IntersectionType::TrafficSignal => {}
        }

        let zorder = i.get_zorder(map);
        if zorder < 0 {
            default_geom = default_geom.color(RewriteColor::ChangeAlpha(0.5));
        }

        default_geom
    }

    // Returns the (octagon, pole, angle of the angle) if there's room to draw it.
    pub fn stop_sign_geom(ss: &RoadWithStopSign, map: &Map) -> Option<(Polygon, Polygon, Angle)> {
        let trim_back = Distance::meters(0.1);
        let edge_lane = map.get_l(ss.lane_closest_to_edge);
        // TODO The dream of trimming f64's was to isolate epsilon checks like this...
        if edge_lane.length() - trim_back <= EPSILON_DIST {
            // TODO warn
            return None;
        }
        let last_line = edge_lane
            .lane_center_pts
            .exact_slice(Distance::ZERO, edge_lane.length() - trim_back)
            .last_line();
        let last_line = if map.get_config().driving_side == DrivingSide::Right {
            last_line.shift_right(edge_lane.width)
        } else {
            last_line.shift_left(edge_lane.width)
        };

        let octagon = make_octagon(last_line.pt2(), Distance::meters(1.0), last_line.angle());
        let pole = Line::must_new(
            last_line
                .pt2()
                .project_away(Distance::meters(1.5), last_line.angle().opposite()),
            // TODO Slightly < 0.9
            last_line
                .pt2()
                .project_away(Distance::meters(0.9), last_line.angle().opposite()),
        )
        .make_polygons(Distance::meters(0.3));
        Some((octagon, pole, last_line.angle()))
    }
}

impl Renderable for DrawIntersection {
    fn get_id(&self) -> ID {
        ID::Intersection(self.id)
    }

    fn draw(&self, g: &mut GfxCtx, app: &dyn AppLike, opts: &DrawOptions) {
        // Lazily calculate, because these are expensive to all do up-front, and most players won't
        // exhaustively see every intersection during a single session
        let mut draw = self.draw_default.borrow_mut();
        if draw.is_none() {
            *draw = Some(g.upload(self.render(g, app)));
        }
        g.redraw(draw.as_ref().unwrap());

        if let Some(signal) = app.map().maybe_get_traffic_signal(self.id) {
            if !opts.suppress_traffic_signal_details.contains(&self.id) {
                let mut maybe_redraw = self.draw_traffic_signal.borrow_mut();
                let recalc = maybe_redraw
                    .as_ref()
                    .map(|(t, _)| *t != app.sim_time())
                    .unwrap_or(true);
                if recalc {
                    let (idx, remaining) = app.current_stage_and_remaining_time(self.id);
                    let mut batch = GeomBatch::new();
                    traffic_signal::draw_signal_stage(
                        g.prerender,
                        &signal.stages[idx],
                        idx,
                        self.id,
                        Some(remaining),
                        &mut batch,
                        app,
                        app.opts().traffic_signal_style.clone(),
                    );
                    *maybe_redraw = Some((app.sim_time(), g.prerender.upload(batch)));
                }
                let (_, batch) = maybe_redraw.as_ref().unwrap();
                g.redraw(batch);
            }
        }
    }

    fn get_outline(&self, map: &Map) -> Polygon {
        let poly = &map.get_i(self.id).polygon;
        poly.to_outline(OUTLINE_THICKNESS)
            .unwrap_or_else(|_| poly.clone())
    }

    fn contains_pt(&self, pt: Pt2D, map: &Map) -> bool {
        map.get_i(self.id).polygon.contains_pt(pt)
    }

    fn get_zorder(&self) -> isize {
        self.zorder
    }
}

// TODO Temporarily public for debugging.
pub fn calculate_corners(i: &Intersection, map: &Map) -> Vec<Polygon> {
    if i.is_footway(map) {
        return Vec::new();
    }

    let mut corners = Vec::new();

    for turn in map.get_turns_in_intersection(i.id) {
        if turn.turn_type == TurnType::SharedSidewalkCorner {
            // Avoid double-rendering
            if map.get_l(turn.id.src).dst_i != i.id {
                continue;
            }
            let l1 = map.get_l(turn.id.src);
            let l2 = map.get_l(turn.id.dst);

            // Special case for dead-ends: just thicken the geometry.
            if i.roads.len() == 1 {
                corners.push(turn.geom.make_polygons(l1.width.min(l2.width)));
                continue;
            }

            if l1.width == l2.width {
                // When two sidewalks or two shoulders meet, use the turn geometry to create some
                // nice rounding.
                let width = l1.width;
                if let Some(poly) = (|| {
                    let mut pts = turn.geom.shift_left(width / 2.0).ok()?.into_points();
                    pts.push(l2.first_line().shift_left(width / 2.0).pt1());
                    pts.push(l2.first_line().shift_right(width / 2.0).pt1());
                    pts.extend(
                        turn.geom
                            .shift_right(width / 2.0)
                            .ok()?
                            .reversed()
                            .into_points(),
                    );
                    pts.push(l1.last_line().shift_right(width / 2.0).pt2());
                    pts.push(l1.last_line().shift_left(width / 2.0).pt2());
                    pts.push(pts[0]);
                    // Many resulting shapes aren't valid rings, but we can still triangulate them.
                    Some(Polygon::buggy_new(pts))
                })() {
                    corners.push(poly);
                }
            } else {
                // When a sidewalk and a shoulder meet, use a simpler shape to connect them.
                let mut pts = vec![
                    l2.first_line().shift_left(l2.width / 2.0).pt1(),
                    l2.first_line().shift_right(l2.width / 2.0).pt1(),
                    l1.last_line().shift_right(l1.width / 2.0).pt2(),
                    l1.last_line().shift_left(l1.width / 2.0).pt2(),
                ];
                pts.push(pts[0]);
                if let Ok(ring) = Ring::new(pts) {
                    corners.push(ring.to_polygon());
                }
            }
        }
    }

    corners
}

// calculate_corners smooths edges, but we don't want to do that when drawing explicit borders.
fn calculate_corners_with_borders(batch: &mut GeomBatch, app: &dyn AppLike, i: &Intersection) {
    let map = app.map();
    let rank = i.get_rank(map);
    let surface_color = app.cs().zoomed_road_surface(LaneType::Sidewalk, rank);
    let border_color = app.cs().general_road_marking(rank);

    for turn in map.get_turns_in_intersection(i.id) {
        if turn.turn_type != TurnType::SharedSidewalkCorner {
            continue;
        }
        // Avoid double-rendering
        if map.get_l(turn.id.src).dst_i != i.id {
            continue;
        }
        let width = map
            .get_l(turn.id.src)
            .width
            .min(map.get_l(turn.id.dst).width);

        // TODO This leaves gaps.
        batch.push(surface_color, turn.geom.make_polygons(width));

        let thickness = Distance::meters(0.2);
        let shift = (width - thickness) / 2.0;
        batch.push(
            border_color,
            turn.geom.must_shift_right(shift).make_polygons(thickness),
        );
        batch.push(
            border_color,
            turn.geom.must_shift_left(shift).make_polygons(thickness),
        );
    }
}

// TODO This assumes the lanes change direction only at one point. A two-way cycletrack right at
// the border will look a bit off.
fn calculate_border_arrows(i: &Intersection, r: &Road, map: &Map) -> Vec<Polygon> {
    let mut result = Vec::new();

    let mut width_fwd = Distance::ZERO;
    let mut width_back = Distance::ZERO;
    for (l, dir, _) in r.lanes_ltr() {
        if dir == Direction::Fwd {
            width_fwd += map.get_l(l).width;
        } else {
            width_back += map.get_l(l).width;
        }
    }
    let center = r.get_dir_change_pl(map);

    // These arrows should point from the void to the road
    if !i.outgoing_lanes.is_empty() {
        let (line, width) = if r.dst_i == i.id {
            (
                center.last_line().shift_left(width_back / 2.0).reverse(),
                width_back,
            )
        } else {
            (center.first_line().shift_right(width_fwd / 2.0), width_fwd)
        };
        result.push(
            // DEGENERATE_INTERSECTION_HALF_LENGTH is 2.5m...
            PolyLine::must_new(vec![
                line.unbounded_dist_along(Distance::meters(-9.5)),
                line.unbounded_dist_along(Distance::meters(-0.5)),
            ])
            .make_arrow(width / 3.0, ArrowCap::Triangle),
        );
    }

    // These arrows should point from the road to the void
    if !i.incoming_lanes.is_empty() {
        let (line, width) = if r.dst_i == i.id {
            (
                center.last_line().shift_right(width_fwd / 2.0).reverse(),
                width_fwd,
            )
        } else {
            (center.first_line().shift_left(width_back / 2.0), width_back)
        };
        result.push(
            PolyLine::must_new(vec![
                line.unbounded_dist_along(Distance::meters(-0.5)),
                line.unbounded_dist_along(Distance::meters(-9.5)),
            ])
            .make_arrow(width / 3.0, ArrowCap::Triangle),
        );
    }

    result
}

// TODO A squished octagon would look better
fn make_octagon(center: Pt2D, radius: Distance, facing: Angle) -> Polygon {
    Ring::must_new(
        (0..=8)
            .map(|i| center.project_away(radius, facing.rotate_degs(22.5 + f64::from(i * 360 / 8))))
            .collect(),
    )
    .to_polygon()
}

pub fn make_crosswalk(batch: &mut GeomBatch, turn: &Turn, map: &Map, cs: &ColorScheme) {
    if make_rainbow_crosswalk(batch, turn, map) {
        return;
    }

    // This size also looks better for shoulders
    let width = SIDEWALK_THICKNESS;
    // Start at least width out to not hit sidewalk corners. Also account for the thickness of the
    // crosswalk line itself. Center the lines inside these two boundaries.
    let boundary = width;
    let tile_every = width * 0.6;
    let line = {
        // The middle line in the crosswalk geometry is the main crossing line.
        let pts = turn.geom.points();
        if pts.len() < 3 {
            println!(
                "Not rendering crosswalk for {}; its geometry was squished earlier",
                turn.id
            );
            return;
        }
        match Line::new(pts[1], pts[2]) {
            Some(l) => l,
            None => {
                return;
            }
        }
    };

    let available_length = line.length() - (boundary * 2.0);
    if available_length > Distance::ZERO {
        let num_markings = (available_length / tile_every).floor() as usize;
        let mut dist_along =
            boundary + (available_length - tile_every * (num_markings as f64)) / 2.0;
        // TODO Seems to be an off-by-one sometimes. Not enough of these.
        let err = format!("make_crosswalk for {} broke", turn.id);
        for _ in 0..=num_markings {
            let pt1 = line.dist_along(dist_along).expect(&err);
            // Reuse perp_line. Project away an arbitrary amount
            let pt2 = pt1.project_away(Distance::meters(1.0), line.angle());
            let general_road_marking =
                cs.general_road_marking(map.get_i(turn.id.parent).get_rank(map));
            batch.push(
                general_road_marking,
                perp_line(Line::must_new(pt1, pt2), width).make_polygons(CROSSWALK_LINE_THICKNESS),
            );

            // Actually every line is a double
            let pt3 = line
                .dist_along(dist_along + 2.0 * CROSSWALK_LINE_THICKNESS)
                .expect(&err);
            let pt4 = pt3.project_away(Distance::meters(1.0), line.angle());
            batch.push(
                general_road_marking,
                perp_line(Line::must_new(pt3, pt4), width).make_polygons(CROSSWALK_LINE_THICKNESS),
            );

            dist_along += tile_every;
        }
    }
}

fn make_rainbow_crosswalk(batch: &mut GeomBatch, turn: &Turn, map: &Map) -> bool {
    // TODO The crosswalks aren't tagged in OSM yet. Manually hardcoding some now.
    let node = map.get_i(turn.id.parent).orig_id.0;
    let way = map.get_parent(turn.id.src).orig_id.osm_way_id.0;
    match (node, way) {
        // Broadway and Pine
        (53073255, 428246441) |
        (53073255, 332601014) |
        // Broadway and Pike
        (53073254, 6447455) |
        (53073254, 607690679) |
        // 10th and Pine
        (53168934, 6456052) |
        // 10th and Pike
        (53200834, 6456052) |
        // 11th and Pine
        (53068795, 607691081) |
        (53068795, 65588105) |
        // 11th and Pike
        (53068794, 65588105) => {}
        _ => { return false; }
    }

    let total_width = map.get_l(turn.id.src).width;
    let colors = vec![
        Color::WHITE,
        Color::RED,
        Color::ORANGE,
        Color::YELLOW,
        Color::GREEN,
        Color::BLUE,
        Color::hex("#8B00FF"),
        Color::WHITE,
    ];
    let band_width = total_width / (colors.len() as f64);
    let slice = turn
        .geom
        .exact_slice(total_width, turn.geom.length() - total_width)
        .must_shift_left(total_width / 2.0 - band_width / 2.0);
    for (idx, color) in colors.into_iter().enumerate() {
        batch.push(
            color,
            slice
                .must_shift_right(band_width * (idx as f64))
                .make_polygons(band_width),
        );
    }
    true
}

// TODO copied from DrawLane
fn perp_line(l: Line, length: Distance) -> Line {
    let pt1 = l.shift_right(length / 2.0).pt1();
    let pt2 = l.shift_left(length / 2.0).pt1();
    Line::must_new(pt1, pt2)
}