1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
// TODO Possibly these should be methods on Map.

use std::collections::{HashMap, HashSet};

use petgraph::graphmap::DiGraphMap;

use geom::{Distance, Duration, Speed};

pub use self::walking::{all_walking_costs_from, WalkingOptions};
use crate::pathfind::build_graph_for_vehicles;
pub use crate::pathfind::{driving_cost, WalkingNode};
use crate::{BuildingID, LaneID, Map, PathConstraints};

mod walking;

/// Calculate the srongy connected components (SCC) of the part of the map accessible by constraints
/// (ie, the graph of sidewalks or driving+bike lanes). The largest component is the "main" graph;
/// the rest is disconnected. Returns (lanes in the largest "main" component, all other disconnected
/// lanes)
pub fn find_scc(map: &Map, constraints: PathConstraints) -> (HashSet<LaneID>, HashSet<LaneID>) {
    let mut graph = DiGraphMap::new();
    for turn in map.all_turns().values() {
        if constraints.can_use(map.get_l(turn.id.src), map)
            && constraints.can_use(map.get_l(turn.id.dst), map)
        {
            graph.add_edge(turn.id.src, turn.id.dst, 1);
        }
    }
    let components = petgraph::algo::kosaraju_scc(&graph);
    if components.is_empty() {
        return (HashSet::new(), HashSet::new());
    }
    let largest_group: HashSet<LaneID> = components
        .into_iter()
        .max_by_key(|c| c.len())
        .unwrap()
        .into_iter()
        .collect();
    let disconnected = map
        .all_lanes()
        .iter()
        .filter_map(|l| {
            if constraints.can_use(l, map) && !largest_group.contains(&l.id) {
                Some(l.id)
            } else {
                None
            }
        })
        .collect();
    (largest_group, disconnected)
}

/// Starting from one building, calculate the cost to all others. If a destination isn't reachable,
/// it won't be included in the results. Ignore results greater than the time_limit away.
pub fn all_vehicle_costs_from(
    map: &Map,
    start: BuildingID,
    time_limit: Duration,
    constraints: PathConstraints,
) -> HashMap<BuildingID, Duration> {
    assert!(constraints != PathConstraints::Pedestrian);
    let mut results = HashMap::new();

    // TODO We have a graph of LaneIDs, but mapping a building to one isn't straightforward. In
    // the common case it'll be fine, but some buildings are isolated from the graph by some
    // sidewalks.
    let mut bldg_to_lane = HashMap::new();
    for b in map.all_buildings() {
        if constraints == PathConstraints::Car {
            if let Some((pos, _)) = b.driving_connection(map) {
                bldg_to_lane.insert(b.id, pos.lane());
            }
        } else if constraints == PathConstraints::Bike {
            if let Some((pos, _)) = b.biking_connection(map) {
                bldg_to_lane.insert(b.id, pos.lane());
            }
        }
    }

    // TODO Copied from simulation code :(
    let max_bike_speed = Speed::miles_per_hour(10.0);

    if let Some(start_lane) = bldg_to_lane.get(&start) {
        let graph = build_graph_for_vehicles(map, constraints);
        let cost_per_lane = petgraph::algo::dijkstra(&graph, *start_lane, None, |(_, _, turn)| {
            driving_cost(map.get_l(turn.src), map.get_t(*turn), constraints, map)
        });
        for (b, lane) in bldg_to_lane {
            if let Some(meters) = cost_per_lane.get(&lane) {
                let distance = Distance::meters(*meters as f64);
                let duration = distance / max_bike_speed;
                if duration <= time_limit {
                    results.insert(b, duration);
                }
            }
        }
    }

    results
}