1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
// A traffic signal consists of a sequence of Stages that repeat in a cycle. Most Stages last for a
// fixed duration. During a single Stage, some movements are protected (can proceed with the highest
// priority), while others are permitted (have to yield before proceeding).

use std::collections::{BTreeMap, BTreeSet};
use std::convert::TryFrom;

use serde::{Deserialize, Serialize};

use abstutil::{deserialize_btreemap, retain_btreeset, serialize_btreemap, Timer};
use geom::{Distance, Duration, Speed};

use crate::make::traffic_signals::{brute_force, get_possible_policies};
use crate::objects::traffic_signals::PhaseType::{Adaptive, Fixed};
use crate::raw::OriginalRoad;
use crate::{
    osm, CompressedMovementID, DirectedRoadID, Direction, IntersectionID, Map, Movement,
    MovementID, TurnID, TurnPriority, TurnType,
};

// The pace to use for crosswalk pace in m/s
// https://en.wikipedia.org/wiki/Preferred_walking_speed
const CROSSWALK_PACE: Speed = Speed::const_meters_per_second(1.4);

#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct ControlTrafficSignal {
    pub id: IntersectionID,
    pub stages: Vec<Stage>,
    pub offset: Duration,

    #[serde(
        serialize_with = "serialize_btreemap",
        deserialize_with = "deserialize_btreemap"
    )]
    pub movements: BTreeMap<MovementID, Movement>,
}

#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
pub struct Stage {
    pub protected_movements: BTreeSet<MovementID>,
    pub yield_movements: BTreeSet<MovementID>,
    // TODO Not renaming this, because this is going to change radically in
    // https://github.com/dabreegster/abstreet/pull/298 anyway
    pub phase_type: PhaseType,
}

#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
pub enum PhaseType {
    Fixed(Duration),
    // Same as fixed, but when this stage would normally end, if there's still incoming demand,
    // repeat the stage entirely.
    // TODO This is a silly policy, but a start towards variable timers.
    Adaptive(Duration),
}

impl PhaseType {
    // TODO Maybe don't have this; force callers to acknowledge different policies
    pub fn simple_duration(&self) -> Duration {
        match self {
            PhaseType::Fixed(d) | PhaseType::Adaptive(d) => *d,
        }
    }
}

impl ControlTrafficSignal {
    pub fn new(map: &Map, id: IntersectionID, timer: &mut Timer) -> ControlTrafficSignal {
        let mut policies = ControlTrafficSignal::get_possible_policies(map, id, timer);
        if policies.len() == 1 {
            timer.warn(format!("Falling back to greedy_assignment for {}", id));
        }
        policies.remove(0).1
    }

    pub fn get_possible_policies(
        map: &Map,
        id: IntersectionID,
        timer: &mut Timer,
    ) -> Vec<(String, ControlTrafficSignal)> {
        get_possible_policies(map, id, timer)
    }
    // TODO tmp
    pub fn brute_force(map: &Map, id: IntersectionID) {
        brute_force(map, id)
    }

    pub fn get_min_crossing_time(&self, idx: usize) -> Duration {
        let mut max_distance = Distance::meters(0.0);
        for movement in &self.stages[idx].protected_movements {
            if movement.crosswalk {
                max_distance =
                    max_distance.max(self.movements.get(&movement).unwrap().geom.length());
            }
        }
        let time = max_distance / CROSSWALK_PACE;
        assert!(time >= Duration::ZERO);
        // Round up because it is converted to a usize elsewhere
        Duration::seconds(time.inner_seconds().ceil())
    }

    pub(crate) fn validate(&self) -> Result<(), String> {
        // Does the assignment cover the correct set of movements?
        let expected_movements: BTreeSet<MovementID> = self.movements.keys().cloned().collect();
        let mut actual_movements: BTreeSet<MovementID> = BTreeSet::new();
        for stage in &self.stages {
            actual_movements.extend(stage.protected_movements.iter());
            actual_movements.extend(stage.yield_movements.iter());
        }
        if expected_movements != actual_movements {
            return Err(format!(
                "Traffic signal assignment for {} broken. Missing {:?}, contains irrelevant {:?}",
                self.id,
                expected_movements
                    .difference(&actual_movements)
                    .cloned()
                    .collect::<Vec<_>>(),
                actual_movements
                    .difference(&expected_movements)
                    .cloned()
                    .collect::<Vec<_>>()
            ));
        }
        let mut stage_index = 0;
        for stage in &self.stages {
            // Do any of the priority movements in one stage conflict?
            for m1 in stage.protected_movements.iter().map(|m| &self.movements[m]) {
                for m2 in stage.protected_movements.iter().map(|m| &self.movements[m]) {
                    if m1.conflicts_with(m2) {
                        return Err(format!(
                            "Traffic signal has conflicting protected movements in one \
                             stage:\n{:?}\n\n{:?}",
                            m1, m2
                        ));
                    }
                }
            }

            // Do any of the crosswalks yield?
            for m in stage.yield_movements.iter().map(|m| &self.movements[m]) {
                assert!(m.turn_type != TurnType::Crosswalk);
            }
            // Is there enough time in each stage to walk across the crosswalk
            let min_crossing_time = self.get_min_crossing_time(stage_index);
            if stage.phase_type.simple_duration() < min_crossing_time {
                return Err(format!(
                    "Traffic signal does not allow enough time in stage to complete the \
                     crosswalk\nStage Index{}\nStage : {:?}\nTime Required: {}\nTime Given: {}",
                    stage_index,
                    stage,
                    min_crossing_time,
                    stage.phase_type.simple_duration()
                ));
            }
            stage_index += 1;
        }
        Ok(())
    }

    // Returns true if this did anything
    pub fn convert_to_ped_scramble(&mut self) -> bool {
        let orig = self.clone();

        let mut all_walk_stage = Stage::new();
        for m in self.movements.values() {
            if m.turn_type == TurnType::Crosswalk {
                all_walk_stage.edit_movement(m, TurnPriority::Protected);
            }
        }

        // Remove Crosswalk movements from existing stages.
        let mut replaced = std::mem::replace(&mut self.stages, Vec::new());
        let mut has_all_walk = false;
        for stage in replaced.iter_mut() {
            if !has_all_walk && stage == &all_walk_stage {
                has_all_walk = true;
                continue;
            }

            // Crosswalks are only in protected_movements.
            retain_btreeset(&mut stage.protected_movements, |m| {
                self.movements[m].turn_type != TurnType::Crosswalk
            });

            // Blindly try to promote yield movements to protected, now that crosswalks are gone.
            let mut promoted = Vec::new();
            for m in &stage.yield_movements {
                if stage.could_be_protected(*m, &self.movements) {
                    stage.protected_movements.insert(*m);
                    promoted.push(*m);
                }
            }
            for m in promoted {
                stage.yield_movements.remove(&m);
            }
        }
        self.stages = replaced;

        if !has_all_walk {
            self.stages.push(all_walk_stage);
        }
        self != &orig
    }

    pub fn turn_to_movement(&self, turn: TurnID) -> MovementID {
        if let Some(m) = self.movements.values().find(|m| m.members.contains(&turn)) {
            m.id
        } else {
            panic!("{} doesn't belong to any movements in {}", turn, self.id)
        }
    }

    pub fn missing_turns(&self) -> BTreeSet<MovementID> {
        let mut missing: BTreeSet<MovementID> = self.movements.keys().cloned().collect();
        for stage in &self.stages {
            for m in &stage.protected_movements {
                missing.remove(m);
            }
            for m in &stage.yield_movements {
                missing.remove(m);
            }
        }
        missing
    }

    pub fn compressed_id(&self, turn: TurnID) -> CompressedMovementID {
        for (idx, m) in self.movements.values().enumerate() {
            if m.members.contains(&turn) {
                return CompressedMovementID {
                    i: self.id,
                    idx: u8::try_from(idx).unwrap(),
                };
            }
        }
        panic!(
            "{} doesn't belong to any turn movements in {}",
            turn, self.id
        )
    }
}

impl Stage {
    pub fn new() -> Stage {
        Stage {
            protected_movements: BTreeSet::new(),
            yield_movements: BTreeSet::new(),
            // TODO Set a default
            phase_type: PhaseType::Fixed(Duration::seconds(30.0)),
        }
    }

    pub fn could_be_protected(
        &self,
        m1: MovementID,
        movements: &BTreeMap<MovementID, Movement>,
    ) -> bool {
        let movement1 = &movements[&m1];
        for m2 in &self.protected_movements {
            if m1 == *m2 || movement1.conflicts_with(&movements[m2]) {
                return false;
            }
        }
        true
    }

    pub fn get_priority_of_turn(&self, t: TurnID, parent: &ControlTrafficSignal) -> TurnPriority {
        self.get_priority_of_movement(parent.turn_to_movement(t))
    }

    pub fn get_priority_of_movement(&self, m: MovementID) -> TurnPriority {
        if self.protected_movements.contains(&m) {
            TurnPriority::Protected
        } else if self.yield_movements.contains(&m) {
            TurnPriority::Yield
        } else {
            TurnPriority::Banned
        }
    }

    pub fn edit_movement(&mut self, g: &Movement, pri: TurnPriority) {
        let mut ids = vec![g.id];
        if g.turn_type == TurnType::Crosswalk {
            ids.push(MovementID {
                from: g.id.to,
                to: g.id.from,
                parent: g.id.parent,
                crosswalk: true,
            });
            self.enforce_minimum_crosswalk_time(g);
        }
        for id in ids {
            self.protected_movements.remove(&id);
            self.yield_movements.remove(&id);
            if pri == TurnPriority::Protected {
                self.protected_movements.insert(id);
            } else if pri == TurnPriority::Yield {
                self.yield_movements.insert(id);
            }
        }
    }
    pub fn enforce_minimum_crosswalk_time(&mut self, movement: &Movement) {
        // Round up to an int, because it is exported as a usize
        let time = Duration::seconds(
            (movement.geom.length() / CROSSWALK_PACE)
                .inner_seconds()
                .ceil(),
        );
        if time > self.phase_type.simple_duration() {
            self.phase_type = match self.phase_type {
                PhaseType::Adaptive(_) => Adaptive(time),
                PhaseType::Fixed(_) => Fixed(time),
            };
        }
    }
}

impl ControlTrafficSignal {
    pub fn export(&self, map: &Map) -> seattle_traffic_signals::TrafficSignal {
        seattle_traffic_signals::TrafficSignal {
            intersection_osm_node_id: map.get_i(self.id).orig_id.0,
            phases: self
                .stages
                .iter()
                .map(|s| seattle_traffic_signals::Phase {
                    protected_turns: s
                        .protected_movements
                        .iter()
                        .map(|t| export_movement(t, map))
                        .collect(),
                    permitted_turns: s
                        .yield_movements
                        .iter()
                        .map(|t| export_movement(t, map))
                        .collect(),
                    phase_type: match s.phase_type {
                        PhaseType::Fixed(d) => {
                            seattle_traffic_signals::PhaseType::Fixed(d.inner_seconds() as usize)
                        }
                        PhaseType::Adaptive(d) => {
                            seattle_traffic_signals::PhaseType::Adaptive(d.inner_seconds() as usize)
                        }
                    },
                })
                .collect(),
            offset_seconds: self.offset.inner_seconds() as usize,
        }
    }

    pub(crate) fn import(
        raw: seattle_traffic_signals::TrafficSignal,
        id: IntersectionID,
        map: &Map,
    ) -> Result<ControlTrafficSignal, String> {
        let mut stages = Vec::new();
        for s in raw.phases {
            let mut errors = Vec::new();
            let mut protected_movements = BTreeSet::new();
            for t in s.protected_turns {
                match import_movement(t, map) {
                    Ok(mvmnt) => {
                        protected_movements.insert(mvmnt);
                    }
                    Err(err) => {
                        errors.push(err);
                    }
                }
            }
            let mut permitted_movements = BTreeSet::new();
            for t in s.permitted_turns {
                match import_movement(t, map) {
                    Ok(mvmnt) => {
                        permitted_movements.insert(mvmnt);
                    }
                    Err(err) => {
                        errors.push(err);
                    }
                }
            }
            if errors.is_empty() {
                stages.push(Stage {
                    protected_movements,
                    yield_movements: permitted_movements,
                    phase_type: match s.phase_type {
                        seattle_traffic_signals::PhaseType::Fixed(d) => {
                            PhaseType::Fixed(Duration::seconds(d as f64))
                        }
                        seattle_traffic_signals::PhaseType::Adaptive(d) => {
                            PhaseType::Adaptive(Duration::seconds(d as f64))
                        }
                    },
                });
            } else {
                return Err(errors.join("; "));
            }
        }
        let ts = ControlTrafficSignal {
            id,
            stages,
            offset: Duration::seconds(raw.offset_seconds as f64),
            movements: Movement::for_i(id, map).unwrap(),
        };
        ts.validate()?;
        Ok(ts)
    }
}

fn export_movement(id: &MovementID, map: &Map) -> seattle_traffic_signals::Turn {
    let from = map.get_r(id.from.id).orig_id;
    let to = map.get_r(id.to.id).orig_id;

    seattle_traffic_signals::Turn {
        from: seattle_traffic_signals::DirectedRoad {
            osm_way_id: from.osm_way_id.0,
            osm_node1: from.i1.0,
            osm_node2: from.i2.0,
            is_forwards: id.from.dir == Direction::Fwd,
        },
        to: seattle_traffic_signals::DirectedRoad {
            osm_way_id: to.osm_way_id.0,
            osm_node1: to.i1.0,
            osm_node2: to.i2.0,
            is_forwards: id.to.dir == Direction::Fwd,
        },
        intersection_osm_node_id: map.get_i(id.parent).orig_id.0,
        is_crosswalk: id.crosswalk,
    }
}

fn import_movement(id: seattle_traffic_signals::Turn, map: &Map) -> Result<MovementID, String> {
    Ok(MovementID {
        from: find_r(id.from, map)?,
        to: find_r(id.to, map)?,
        parent: map.find_i_by_osm_id(osm::NodeID(id.intersection_osm_node_id))?,
        crosswalk: id.is_crosswalk,
    })
}

fn find_r(id: seattle_traffic_signals::DirectedRoad, map: &Map) -> Result<DirectedRoadID, String> {
    Ok(DirectedRoadID {
        id: map.find_r_by_osm_id(OriginalRoad::new(
            id.osm_way_id,
            (id.osm_node1, id.osm_node2),
        ))?,
        dir: if id.is_forwards {
            Direction::Fwd
        } else {
            Direction::Back
        },
    })
}