use crate::mechanics::car::Car;
use crate::mechanics::Queue;
use crate::{AgentID, AlertLocation, CarID, Command, Event, Scheduler, Speed};
use abstutil::{deserialize_btreemap, retain_btreeset, serialize_btreemap};
use geom::{Duration, Time};
use map_model::{
ControlStopSign, ControlTrafficSignal, IntersectionID, LaneID, Map, PhaseType, RoadID,
Traversable, TurnID, TurnPriority, TurnType,
};
use serde::{Deserialize, Serialize};
use std::collections::{BTreeMap, BTreeSet, HashSet};
const WAIT_AT_STOP_SIGN: Duration = Duration::const_seconds(0.5);
const WAIT_BEFORE_YIELD_AT_TRAFFIC_SIGNAL: Duration = Duration::const_seconds(0.2);
#[derive(Serialize, Deserialize, Clone)]
pub struct IntersectionSimState {
state: BTreeMap<IntersectionID, State>,
use_freeform_policy_everywhere: bool,
dont_block_the_box: bool,
break_turn_conflict_cycles: bool,
handle_uber_turns: bool,
blocked_by: BTreeSet<(CarID, CarID)>,
events: Vec<Event>,
}
#[derive(Clone, Serialize, Deserialize)]
struct State {
id: IntersectionID,
accepted: BTreeSet<Request>,
#[serde(
serialize_with = "serialize_btreemap",
deserialize_with = "deserialize_btreemap"
)]
waiting: BTreeMap<Request, Time>,
reserved: BTreeSet<Request>,
signal: Option<SignalState>,
}
#[derive(Clone, Serialize, Deserialize)]
struct SignalState {
current_stage: usize,
stage_ends_at: Time,
}
#[derive(PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize, Clone, Debug)]
struct Request {
agent: AgentID,
turn: TurnID,
}
impl IntersectionSimState {
pub fn new(
map: &Map,
scheduler: &mut Scheduler,
use_freeform_policy_everywhere: bool,
dont_block_the_box: bool,
break_turn_conflict_cycles: bool,
handle_uber_turns: bool,
) -> IntersectionSimState {
let mut sim = IntersectionSimState {
state: BTreeMap::new(),
use_freeform_policy_everywhere,
dont_block_the_box,
break_turn_conflict_cycles,
handle_uber_turns,
blocked_by: BTreeSet::new(),
events: Vec::new(),
};
for i in map.all_intersections() {
let mut state = State {
id: i.id,
accepted: BTreeSet::new(),
waiting: BTreeMap::new(),
reserved: BTreeSet::new(),
signal: None,
};
if i.is_traffic_signal() && !use_freeform_policy_everywhere {
state.signal = Some(SignalState::new(i.id, Time::START_OF_DAY, map, scheduler));
}
sim.state.insert(i.id, state);
}
sim
}
pub fn nobody_headed_towards(&self, lane: LaneID, i: IntersectionID) -> bool {
let state = &self.state[&i];
!state
.accepted
.iter()
.chain(state.reserved.iter())
.any(|req| req.turn.dst == lane)
}
pub fn turn_finished(
&mut self,
now: Time,
agent: AgentID,
turn: TurnID,
scheduler: &mut Scheduler,
map: &Map,
) {
let state = self.state.get_mut(&turn.parent).unwrap();
assert!(state.accepted.remove(&Request { agent, turn }));
state.reserved.remove(&Request { agent, turn });
if map.get_t(turn).turn_type != TurnType::SharedSidewalkCorner {
self.wakeup_waiting(now, turn.parent, scheduler, map);
}
if self.break_turn_conflict_cycles {
if let AgentID::Car(car) = agent {
retain_btreeset(&mut self.blocked_by, |(_, c)| *c != car);
}
}
}
pub fn cancel_request(&mut self, agent: AgentID, turn: TurnID) {
let state = self.state.get_mut(&turn.parent).unwrap();
state.waiting.remove(&Request { agent, turn });
if self.break_turn_conflict_cycles {
if let AgentID::Car(car) = agent {
retain_btreeset(&mut self.blocked_by, |(c1, c2)| *c1 != car && *c2 != car);
}
}
}
pub fn space_freed(
&mut self,
now: Time,
i: IntersectionID,
scheduler: &mut Scheduler,
map: &Map,
) {
self.wakeup_waiting(now, i, scheduler, map);
}
pub fn vehicle_gone(&mut self, car: CarID) {
retain_btreeset(&mut self.blocked_by, |(c1, c2)| *c1 != car && *c2 != car);
}
fn wakeup_waiting(&self, now: Time, i: IntersectionID, scheduler: &mut Scheduler, map: &Map) {
let mut all: Vec<(Request, Time)> = self.state[&i]
.waiting
.iter()
.map(|(r, t)| (r.clone(), *t))
.collect();
all.sort_by_key(|(_, t)| *t);
let mut protected = Vec::new();
let mut yielding = Vec::new();
if self.use_freeform_policy_everywhere {
for (req, _) in all {
protected.push(req);
}
} else if let Some(ref signal) = map.maybe_get_traffic_signal(i) {
let stage = &signal.stages[self.state[&i].signal.as_ref().unwrap().current_stage];
for (req, _) in all {
match stage.get_priority_of_turn(req.turn, signal) {
TurnPriority::Protected => {
protected.push(req);
}
TurnPriority::Yield => {
yielding.push(req);
}
TurnPriority::Banned => {}
}
}
} else if let Some(ref sign) = map.maybe_get_stop_sign(i) {
for (req, _) in all {
if sign.get_priority(req.turn, map) == TurnPriority::Protected {
protected.push(req);
} else {
yielding.push(req);
}
}
} else {
assert!(protected.is_empty());
assert!(yielding.is_empty());
};
for req in protected {
scheduler.update(now, Command::update_agent(req.agent));
}
for req in yielding {
scheduler.update(
now + Duration::seconds(0.1),
Command::update_agent(req.agent),
);
}
}
pub fn update_intersection(
&mut self,
now: Time,
id: IntersectionID,
map: &Map,
scheduler: &mut Scheduler,
) {
let state = self.state.get_mut(&id).unwrap();
let signal_state = state.signal.as_mut().unwrap();
let signal = map.get_traffic_signal(id);
assert_eq!(now, signal_state.stage_ends_at);
let old_stage = &signal.stages[signal_state.current_stage];
match old_stage.phase_type {
PhaseType::Fixed(_) => {
signal_state.current_stage += 1;
}
PhaseType::Adaptive(_) => {
if state.waiting.keys().all(|req| {
old_stage.get_priority_of_turn(req.turn, signal) != TurnPriority::Protected
}) {
signal_state.current_stage += 1;
self.events.push(Event::Alert(
AlertLocation::Intersection(id),
"Repeating an adaptive stage".to_string(),
));
}
}
}
if signal_state.current_stage == signal.stages.len() {
signal_state.current_stage = 0;
}
signal_state.stage_ends_at = now
+ signal.stages[signal_state.current_stage]
.phase_type
.simple_duration();
scheduler.push(signal_state.stage_ends_at, Command::UpdateIntersection(id));
self.wakeup_waiting(now, id, scheduler, map);
}
pub fn maybe_start_turn(
&mut self,
agent: AgentID,
turn: TurnID,
speed: Speed,
now: Time,
map: &Map,
scheduler: &mut Scheduler,
maybe_cars_and_queues: Option<(
&Car,
&BTreeMap<CarID, Car>,
&mut BTreeMap<Traversable, Queue>,
)>,
) -> bool {
let req = Request { agent, turn };
self.state
.get_mut(&turn.parent)
.unwrap()
.waiting
.entry(req.clone())
.or_insert(now);
let shared_sidewalk_corner =
map.get_t(req.turn).turn_type == TurnType::SharedSidewalkCorner;
let readonly_pair = maybe_cars_and_queues.as_ref().map(|(_, c, q)| (*c, &**q));
let allowed = if shared_sidewalk_corner {
true
} else if !self.handle_accepted_conflicts(&req, map, readonly_pair) {
false
} else if maybe_cars_and_queues
.as_ref()
.map(|(car, _, _)| {
self.handle_uber_turns && car.router.get_path().currently_inside_ut().is_some()
})
.unwrap_or(false)
{
if let Some(ref signal) = map.maybe_get_traffic_signal(turn.parent) {
if !self.traffic_signal_policy(&req, map, signal, speed, now, None) && false {
self.events.push(Event::Alert(
AlertLocation::Intersection(req.turn.parent),
format!("Running a red light inside an uber-turn: {:?}", req),
));
}
}
true
} else if self.use_freeform_policy_everywhere {
true
} else if let Some(ref signal) = map.maybe_get_traffic_signal(turn.parent) {
self.traffic_signal_policy(&req, map, signal, speed, now, Some(scheduler))
} else if let Some(ref sign) = map.maybe_get_stop_sign(turn.parent) {
self.stop_sign_policy(&req, map, sign, now, scheduler)
} else {
unreachable!()
};
if !allowed {
return false;
}
if self.handle_uber_turns {
if let Some(ut) = maybe_cars_and_queues
.as_ref()
.and_then(|(car, _, _)| car.router.get_path().about_to_start_ut())
{
for t in &ut.path {
let req = Request { agent, turn: *t };
if !self.handle_accepted_conflicts(&req, map, readonly_pair) {
return false;
}
}
for t in &ut.path {
self.state
.get_mut(&t.parent)
.unwrap()
.reserved
.insert(Request { agent, turn: *t });
}
}
}
if let Some((car, _, queues)) = maybe_cars_and_queues {
assert_eq!(agent, AgentID::Car(car.vehicle.id));
let inside_ut = self.handle_uber_turns
&& (car.router.get_path().currently_inside_ut().is_some()
|| car.router.get_path().about_to_start_ut().is_some());
let queue = queues.get_mut(&Traversable::Lane(turn.dst)).unwrap();
if !queue.try_to_reserve_entry(
car,
!self.dont_block_the_box
|| allow_block_the_box(map.get_i(turn.parent).orig_id.0)
|| inside_ut,
) {
if self.break_turn_conflict_cycles {
if let Some(c) = queue.laggy_head {
self.blocked_by.insert((car.vehicle.id, c));
} else if let Some(c) = queue.cars.get(0) {
self.blocked_by.insert((car.vehicle.id, *c));
} else {
self.blocked_by.insert((
car.vehicle.id,
self.state[&turn.parent]
.accepted
.iter()
.find(|r| r.turn.dst == turn.dst)
.unwrap()
.agent
.as_car(),
));
}
}
return false;
}
}
let state = self.state.get_mut(&turn.parent).unwrap();
let delay = now - state.waiting.remove(&req).unwrap();
if !shared_sidewalk_corner {
if let Some(ts) = map.maybe_get_traffic_signal(state.id) {
self.events.push(Event::IntersectionDelayMeasured(
ts.compressed_id(turn),
delay,
agent,
));
}
}
state.accepted.insert(req);
if self.break_turn_conflict_cycles {
if let AgentID::Car(car) = agent {
retain_btreeset(&mut self.blocked_by, |(c, _)| *c != car);
}
}
true
}
pub fn debug(&self, id: IntersectionID, map: &Map) {
println!("{}", abstutil::to_json(&self.state[&id]));
if let Some(ref sign) = map.maybe_get_stop_sign(id) {
println!("{}", abstutil::to_json(sign));
} else if let Some(ref signal) = map.maybe_get_traffic_signal(id) {
println!("{}", abstutil::to_json(signal));
} else {
println!("Border");
}
}
pub fn get_accepted_agents(&self, id: IntersectionID) -> HashSet<AgentID> {
self.state[&id]
.accepted
.iter()
.map(|req| req.agent)
.collect()
}
pub fn get_blocked_by(&self, a: AgentID) -> HashSet<AgentID> {
let mut blocked_by = HashSet::new();
if let AgentID::Car(c) = a {
for (c1, c2) in &self.blocked_by {
if *c1 == c {
blocked_by.insert(AgentID::Car(*c2));
}
}
}
blocked_by
}
pub fn collect_events(&mut self) -> Vec<Event> {
std::mem::replace(&mut self.events, Vec::new())
}
pub fn delayed_intersections(
&self,
now: Time,
threshold: Duration,
) -> Vec<(IntersectionID, Time)> {
let mut candidates = Vec::new();
for state in self.state.values() {
if let Some(earliest) = state.waiting.values().min() {
if now - *earliest >= threshold {
candidates.push((state.id, *earliest));
}
}
}
candidates.sort_by_key(|(_, t)| *t);
candidates
}
pub fn worst_delay(
&self,
now: Time,
map: &Map,
) -> (
BTreeMap<RoadID, Duration>,
BTreeMap<IntersectionID, Duration>,
) {
let mut per_road = BTreeMap::new();
let mut per_intersection = BTreeMap::new();
for (i, state) in &self.state {
for (req, t) in &state.waiting {
{
let r = map.get_l(req.turn.src).parent;
let worst = per_road
.get(&r)
.cloned()
.unwrap_or(Duration::ZERO)
.max(now - *t);
per_road.insert(r, worst);
}
{
let worst = per_intersection
.get(i)
.cloned()
.unwrap_or(Duration::ZERO)
.max(now - *t);
per_intersection.insert(*i, worst);
}
}
}
(per_road, per_intersection)
}
pub fn current_stage_and_remaining_time(
&self,
now: Time,
i: IntersectionID,
) -> (usize, Duration) {
let state = &self.state[&i].signal.as_ref().unwrap();
if now > state.stage_ends_at {
panic!(
"At {}, but {} should have advanced its stage at {}",
now, i, state.stage_ends_at
);
}
(state.current_stage, state.stage_ends_at - now)
}
pub fn handle_live_edited_traffic_signals(
&mut self,
now: Time,
map: &Map,
scheduler: &mut Scheduler,
) {
for state in self.state.values_mut() {
match (
map.maybe_get_traffic_signal(state.id),
state.signal.as_mut(),
) {
(Some(ts), Some(signal_state)) => {
if signal_state.current_stage >= ts.stages.len() {
signal_state.current_stage = 0;
println!(
"WARNING: Traffic signal {} was live-edited in the middle of a stage, \
so jumping back to the first stage",
state.id
);
}
}
(Some(_), None) => {
state.signal = Some(SignalState::new(state.id, now, map, scheduler));
}
(None, Some(_)) => {
state.signal = None;
scheduler.cancel(Command::UpdateIntersection(state.id));
}
(None, None) => {}
}
}
}
}
impl IntersectionSimState {
fn stop_sign_policy(
&mut self,
req: &Request,
map: &Map,
sign: &ControlStopSign,
now: Time,
scheduler: &mut Scheduler,
) -> bool {
let our_priority = sign.get_priority(req.turn, map);
assert!(our_priority != TurnPriority::Banned);
let our_time = self.state[&req.turn.parent].waiting[req];
if our_priority == TurnPriority::Yield && now < our_time + WAIT_AT_STOP_SIGN {
scheduler.push(
our_time + WAIT_AT_STOP_SIGN,
Command::update_agent(req.agent),
);
return false;
}
true
}
fn traffic_signal_policy(
&mut self,
req: &Request,
map: &Map,
signal: &ControlTrafficSignal,
speed: Speed,
now: Time,
scheduler: Option<&mut Scheduler>,
) -> bool {
let turn = map.get_t(req.turn);
let state = &self.state[&req.turn.parent];
let signal_state = state.signal.as_ref().unwrap();
let stage = &signal.stages[signal_state.current_stage];
let full_stage_duration = stage.phase_type.simple_duration();
let remaining_stage_time = signal_state.stage_ends_at - now;
let our_time = state.waiting[req];
let our_priority = stage.get_priority_of_turn(req.turn, signal);
if our_priority == TurnPriority::Banned {
return false;
}
if our_priority == TurnPriority::Yield
&& now < our_time + WAIT_BEFORE_YIELD_AT_TRAFFIC_SIGNAL
{
if let Some(s) = scheduler {
s.push(
our_time + WAIT_BEFORE_YIELD_AT_TRAFFIC_SIGNAL,
Command::update_agent(req.agent),
);
}
return false;
}
let time_to_cross = turn.geom.length() / speed;
if time_to_cross > remaining_stage_time {
if time_to_cross > full_stage_duration {
self.events.push(Event::Alert(
AlertLocation::Intersection(req.turn.parent),
format!(
"{:?} is impossible to fit into stage duration of {}",
req, full_stage_duration
),
));
} else {
return false;
}
}
true
}
fn handle_accepted_conflicts(
&mut self,
req: &Request,
map: &Map,
maybe_cars_and_queues: Option<(&BTreeMap<CarID, Car>, &BTreeMap<Traversable, Queue>)>,
) -> bool {
let turn = map.get_t(req.turn);
let mut cycle_detected = false;
let mut ok = true;
for other in &self.state[&req.turn.parent].accepted {
if map.get_t(other.turn).conflicts_with(turn) {
if self.break_turn_conflict_cycles {
if let AgentID::Car(c) = req.agent {
if let AgentID::Car(c2) = other.agent {
self.blocked_by.insert((c, c2));
}
if !cycle_detected {
if let Some(cycle) =
self.detect_conflict_cycle(c, maybe_cars_and_queues.unwrap())
{
self.events.push(Event::Alert(
AlertLocation::Intersection(req.turn.parent),
format!("Turn conflict cycle involving {:?}", cycle),
));
cycle_detected = true;
}
}
}
}
if !cycle_detected {
ok = false;
}
if turn.id.dst == other.turn.dst {
return false;
}
}
}
if !ok {
return false;
}
for other in &self.state[&req.turn.parent].reserved {
if map.get_t(other.turn).conflicts_with(turn) {
return false;
}
}
true
}
fn detect_conflict_cycle(
&self,
car: CarID,
pair: (&BTreeMap<CarID, Car>, &BTreeMap<Traversable, Queue>),
) -> Option<HashSet<CarID>> {
let (cars, queues) = pair;
let mut queue = vec![car];
let mut seen = HashSet::new();
while !queue.is_empty() {
let current = queue.pop().unwrap();
if !seen.is_empty() && current == car {
return Some(seen);
}
if !seen.contains(¤t) {
seen.insert(current);
for (c1, c2) in &self.blocked_by {
if *c1 == current {
queue.push(*c2);
}
}
if current != car {
let q = &queues[&cars[¤t].router.head()];
let head = if let Some(c) = q.laggy_head {
c
} else {
*q.cars.get(0).unwrap()
};
if current != head {
queue.push(head);
}
}
}
}
None
}
}
impl SignalState {
fn new(id: IntersectionID, now: Time, map: &Map, scheduler: &mut Scheduler) -> SignalState {
let mut state = SignalState {
current_stage: 0,
stage_ends_at: now,
};
let signal = map.get_traffic_signal(id);
let mut offset = (now - Time::START_OF_DAY) + signal.offset;
loop {
let dt = signal.stages[state.current_stage]
.phase_type
.simple_duration();
if offset >= dt {
offset -= dt;
state.current_stage += 1;
if state.current_stage == signal.stages.len() {
state.current_stage = 0;
}
} else {
state.stage_ends_at = now + dt - offset;
break;
}
}
scheduler.push(state.stage_ends_at, Command::UpdateIntersection(id));
state
}
}
fn allow_block_the_box(osm_node_id: i64) -> bool {
osm_node_id == 53211694
|| osm_node_id == 53211693
|| osm_node_id == 53214134
|| osm_node_id == 53214133
|| osm_node_id == 53165712
|| osm_node_id == 281487826
|| osm_node_id == 53209840
|| osm_node_id == 4249361353
}