1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
use anyhow::Result;
use serde::{Deserialize, Serialize};

use crate::{Angle, Bounds, GPSBounds, Polygon, Pt2D};

// Only serializable for Polygons that precompute a tessellation
/// A tessellated polygon, ready for rendering.
#[derive(PartialEq, Serialize, Deserialize, Clone, Debug)]
pub struct Tessellation {
    /// These points aren't in any meaningful order. It's not generally possible to reconstruct a
    /// `Polygon` from this.
    pub(crate) points: Vec<Pt2D>,
    /// Groups of three indices make up the triangles
    indices: Vec<u16>,
}

#[derive(Clone, Debug)]
pub struct Triangle {
    pub pt1: Pt2D,
    pub pt2: Pt2D,
    pub pt3: Pt2D,
}

impl From<Polygon> for Tessellation {
    fn from(mut polygon: Polygon) -> Self {
        if let Some(tessellation) = polygon.tessellation.take() {
            return tessellation;
        }

        let geojson_style: Vec<Vec<Vec<f64>>> = polygon
            .rings
            .iter()
            .map(|ring| {
                ring.points()
                    .iter()
                    .map(|pt| vec![pt.x(), pt.y()])
                    .collect()
            })
            .collect();
        let (vertices, holes, dims) = earcutr::flatten(&geojson_style);
        let indices = downsize(earcutr::earcut(&vertices, &holes, dims));

        Self {
            points: vertices
                .chunks(2)
                .map(|pair| Pt2D::new(pair[0], pair[1]))
                .collect(),
            indices,
        }
    }
}

impl From<geo::Polygon> for Tessellation {
    fn from(poly: geo::Polygon) -> Self {
        // geo::Polygon -> geom::Polygon may fail, so we can't just do two hops. We can tessellate
        // something even if it has invalid Rings.
        let (exterior, mut interiors) = poly.into_inner();
        interiors.insert(0, exterior);

        let geojson_style: Vec<Vec<Vec<f64>>> = interiors
            .into_iter()
            .map(|ring| {
                ring.into_inner()
                    .into_iter()
                    .map(|pt| vec![pt.x, pt.y])
                    .collect()
            })
            .collect();
        let (vertices, holes, dims) = earcutr::flatten(&geojson_style);
        let indices = earcutr::earcut(&vertices, &holes, dims);

        let points = vertices
            .chunks(2)
            .map(|pair| Pt2D::new(pair[0], pair[1]))
            .collect();

        Self::new(points, indices)
    }
}

impl Tessellation {
    pub fn new(points: Vec<Pt2D>, indices: Vec<usize>) -> Self {
        Tessellation {
            points,
            indices: downsize(indices),
        }
    }

    /// The `points` are not necessarily a `Ring`, which has strict requirements about no duplicate
    /// points. We can render various types of invalid polygon.
    pub fn from_ring(points: Vec<Pt2D>) -> Self {
        assert!(points.len() >= 3);

        let mut vertices = Vec::new();
        for pt in &points {
            vertices.push(pt.x());
            vertices.push(pt.y());
        }
        let indices = downsize(earcutr::earcut(&vertices, &Vec::new(), 2));

        Self { points, indices }
    }

    /// Returns (points, indices) for rendering
    pub fn consume(self) -> (Vec<Pt2D>, Vec<u16>) {
        (self.points, self.indices)
    }

    pub fn triangles(&self) -> Vec<Triangle> {
        let mut triangles: Vec<Triangle> = Vec::new();
        for slice in self.indices.chunks_exact(3) {
            triangles.push(Triangle {
                pt1: self.points[slice[0] as usize],
                pt2: self.points[slice[1] as usize],
                pt3: self.points[slice[2] as usize],
            });
        }
        triangles
    }

    pub fn get_bounds(&self) -> Bounds {
        Bounds::from(&self.points)
    }

    pub fn center(&self) -> Pt2D {
        self.get_bounds().center()
    }

    pub(crate) fn transform<F: Fn(&Pt2D) -> Pt2D>(&mut self, f: F) {
        for pt in &mut self.points {
            *pt = f(pt);
        }
    }

    pub fn translate(&mut self, dx: f64, dy: f64) {
        self.transform(|pt| pt.offset(dx, dy));
    }

    pub fn scale(&mut self, factor: f64) {
        self.transform(|pt| Pt2D::new(pt.x() * factor, pt.y() * factor));
    }

    pub fn scale_xy(&mut self, x_factor: f64, y_factor: f64) {
        self.transform(|pt| Pt2D::new(pt.x() * x_factor, pt.y() * y_factor))
    }

    pub fn rotate(&mut self, angle: Angle) {
        self.rotate_around(angle, self.center())
    }

    pub fn rotate_around(&mut self, angle: Angle, pivot: Pt2D) {
        self.transform(|pt| {
            let origin_pt = Pt2D::new(pt.x() - pivot.x(), pt.y() - pivot.y());
            let (sin, cos) = angle.normalized_radians().sin_cos();
            Pt2D::new(
                pivot.x() + origin_pt.x() * cos - origin_pt.y() * sin,
                pivot.y() + origin_pt.y() * cos + origin_pt.x() * sin,
            )
        })
    }

    /// Equivalent to `self.scale(scale).translate(translate_x, translate_y).rotate_around(rotate,
    /// pivot)`, but modifies the polygon in-place and is faster.
    pub fn inplace_multi_transform(
        &mut self,
        scale: f64,
        translate_x: f64,
        translate_y: f64,
        rotate: Angle,
        pivot: Pt2D,
    ) {
        let (sin, cos) = rotate.normalized_radians().sin_cos();

        for pt in &mut self.points {
            // Scale
            let x = scale * pt.x();
            let y = scale * pt.y();
            // Translate
            let x = x + translate_x;
            let y = y + translate_y;
            // Rotate
            let origin_pt = Pt2D::new(x - pivot.x(), y - pivot.y());
            *pt = Pt2D::new(
                pivot.x() + origin_pt.x() * cos - origin_pt.y() * sin,
                pivot.y() + origin_pt.y() * cos + origin_pt.x() * sin,
            );
        }
    }

    pub fn union(self, other: Self) -> Self {
        let mut points = self.points;
        let mut indices = self.indices;
        let offset = points.len() as u16;
        points.extend(other.points);
        for idx in other.indices {
            indices.push(offset + idx);
        }
        Self { points, indices }
    }

    pub fn union_all(mut list: Vec<Self>) -> Self {
        let mut result = list.pop().unwrap();
        for p in list {
            result = result.union(p);
        }
        result
    }

    /// Produces a GeoJSON multipolygon consisting of individual triangles. Optionally map the
    /// world-space points back to GPS.
    pub fn to_geojson(&self, gps: Option<&GPSBounds>) -> geojson::Geometry {
        let mut polygons = Vec::new();
        for triangle in self.triangles() {
            let raw_pts = vec![triangle.pt1, triangle.pt2, triangle.pt3, triangle.pt1];
            let mut pts = Vec::new();
            if let Some(gps) = gps {
                for pt in gps.convert_back(&raw_pts) {
                    pts.push(vec![pt.x(), pt.y()]);
                }
            } else {
                for pt in raw_pts {
                    pts.push(vec![pt.x(), pt.y()]);
                }
            }
            polygons.push(vec![pts]);
        }

        geojson::Geometry::new(geojson::Value::MultiPolygon(polygons))
    }

    // TODO This only makes sense for something vaguely Ring-like
    fn to_geo(&self) -> geo::Polygon {
        let exterior = crate::conversions::pts_to_line_string(&self.points);
        geo::Polygon::new(exterior, Vec::new())
    }

    // TODO After making to_outline return a real Polygon, get rid of this
    pub fn difference(&self, other: &Tessellation) -> Result<Vec<Polygon>> {
        use geo::BooleanOps;

        crate::polygon::from_multi(self.to_geo().difference(&other.to_geo()))
    }
}

fn downsize(input: Vec<usize>) -> Vec<u16> {
    let mut output = Vec::new();
    for x in input {
        if let Ok(x) = u16::try_from(x) {
            output.push(x);
        } else {
            panic!("{} can't fit in u16, some polygon is too huge", x);
        }
    }
    output
}