1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
use std::collections::{BTreeMap, BTreeSet};

use anyhow::Result;
use serde::{Deserialize, Serialize};

use abstutil::MultiMap;
use geom::{Angle, Distance, PolyLine, Pt2D};

use crate::{DirectedRoadID, Direction, IntersectionID, Map, TurnID, TurnType};

/// A movement is like a turn, but with less detail -- it identifies a movement from one directed
/// road to another.
/// One road usually has 4 crosswalks, each a singleton Movement. We need all of the information
/// here to keep each crosswalk separate.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct MovementID {
    pub from: DirectedRoadID,
    pub to: DirectedRoadID,
    pub parent: IntersectionID,
    pub crosswalk: bool,
}

/// This is cheaper to store than a MovementID. It simply indexes into the list of movements.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct CompressedMovementID {
    pub i: IntersectionID,
    // There better not be any intersection with more than 256 movements...
    pub idx: u8,
}

/// A Movement groups all turns from one road to another, letting traffic signals and pathfinding
/// operate at a higher level of abstraction.
// TODO Unclear how this plays with different lane types
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct Movement {
    pub id: MovementID,
    pub turn_type: TurnType,
    pub members: Vec<TurnID>,
    /// The "overall" path of movement, aka, an "average" of the turn geometry
    pub geom: PolyLine,
    pub angle: Angle,
}

impl Movement {
    pub(crate) fn for_i(i: IntersectionID, map: &Map) -> BTreeMap<MovementID, Movement> {
        let mut results = BTreeMap::new();
        let mut movements: MultiMap<(DirectedRoadID, DirectedRoadID), TurnID> = MultiMap::new();
        for turn in &map.get_i(i).turns {
            let from = map.get_l(turn.id.src).get_directed_parent();
            let to = map.get_l(turn.id.dst).get_directed_parent();
            match turn.turn_type {
                TurnType::SharedSidewalkCorner => {}
                TurnType::Crosswalk => {
                    let id = MovementID {
                        from,
                        to,
                        parent: i,
                        crosswalk: true,
                    };
                    results.insert(
                        id,
                        Movement {
                            id,
                            turn_type: TurnType::Crosswalk,
                            members: vec![turn.id],
                            geom: turn.geom.clone(),
                            angle: turn.angle(),
                        },
                    );
                }
                _ => {
                    movements.insert((from, to), turn.id);
                }
            }
        }
        for ((from, to), members) in movements.consume() {
            let geom = match movement_geom(
                members.iter().map(|t| &map.get_t(*t).geom).collect(),
                from,
                to,
            ) {
                Ok(geom) => geom,
                Err(err) => {
                    warn!("Weird movement geometry at {}: {}", i, err);
                    // Just use one of the turns
                    map.get_t(*members.iter().next().unwrap()).geom.clone()
                }
            };
            let turn_types: BTreeSet<TurnType> =
                members.iter().map(|t| map.get_t(*t).turn_type).collect();
            if turn_types.len() > 1 {
                warn!(
                    "Movement between {} and {} has weird turn types! {:?}",
                    from, to, turn_types
                );
            }
            let members: Vec<TurnID> = members.into_iter().collect();
            let id = MovementID {
                from,
                to,
                parent: i,
                crosswalk: false,
            };
            results.insert(
                id,
                Movement {
                    id,
                    turn_type: *turn_types.iter().next().unwrap(),
                    angle: map.get_t(members[0]).angle(),
                    members,
                    geom,
                },
            );
        }
        // The result might be empty for border intersections; that's fine
        results
    }

    /// Polyline points FROM intersection
    pub fn src_center_and_width(&self, map: &Map) -> (PolyLine, Distance) {
        let r = map.get_r(self.id.from.road);

        let mut leftmost = Distance::meters(99999.0);
        let mut rightmost = Distance::ZERO;
        let mut left = Distance::ZERO;

        for l in &r.lanes {
            let right = left + l.width;

            if self.members.iter().any(|t| t.src == l.id) {
                leftmost = leftmost.min(left);
                rightmost = rightmost.max(right);
            }

            left = right;
        }

        let mut pl = r
            .get_left_side()
            .must_shift_right((leftmost + rightmost) / 2.0);
        if self.id.from.dir == Direction::Back {
            pl = pl.reversed();
        }
        // Flip direction, so we point away from the intersection
        if !self.id.crosswalk || map.get_l(self.members[0].src).src_i != self.members[0].parent {
            pl = pl.reversed()
        };
        (pl, rightmost - leftmost)
    }

    pub fn conflicts_with(&self, other: &Movement) -> bool {
        if self.id == other.id {
            return false;
        }
        if self.turn_type == TurnType::Crosswalk && other.turn_type == TurnType::Crosswalk {
            return false;
        }

        if self.id.from == other.id.from
            && self.turn_type != TurnType::Crosswalk
            && other.turn_type != TurnType::Crosswalk
        {
            return false;
        }
        if self.id.to == other.id.to
            && self.turn_type != TurnType::Crosswalk
            && other.turn_type != TurnType::Crosswalk
        {
            return true;
        }
        // TODO If you hit a panic below, you've probably got two separate roads overlapping.
        // Fix it in OSM. Examples: https://www.openstreetmap.org/changeset/87465499,
        // https://www.openstreetmap.org/changeset/85952811
        /*if self.geom == other.geom {
            println!("*********** {:?} and {:?} have the same geom", self.id, other.id);
            return true;
        }*/
        self.geom.intersection(&other.geom).is_some()
    }
}

fn movement_geom(
    polylines: Vec<&PolyLine>,
    from: DirectedRoadID,
    to: DirectedRoadID,
) -> Result<PolyLine> {
    let num_pts = polylines[0].points().len();
    for pl in &polylines {
        if num_pts != pl.points().len() {
            // Kiiiiinda spammy
            if false {
                warn!(
                    "Movement between {} and {} can't make nice geometry",
                    from, to
                );
            }
            return Ok(polylines[0].clone());
        }
    }

    let mut pts = Vec::new();
    for idx in 0..num_pts {
        pts.push(Pt2D::center(
            &polylines
                .iter()
                .map(|pl| pl.points()[idx])
                .collect::<Vec<_>>(),
        ));
    }
    PolyLine::deduping_new(pts)
}