1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
use std::collections::{BTreeMap, BTreeSet, HashSet, VecDeque};

use serde::{Deserialize, Serialize};

use abstutil::{deserialize_btreemap, serialize_btreemap};
use geom::{Distance, Duration, PolyLine, Time};
use map_model::{LaneID, Map, Path, PathStep, Traversable};

use crate::mechanics::car::{Car, CarState};
use crate::mechanics::Queue;
use crate::sim::Ctx;
use crate::{
    ActionAtEnd, AgentID, AgentProperties, CarID, Command, CreateCar, DistanceInterval,
    DrawCarInput, Event, IntersectionSimState, ParkedCar, ParkingSim, ParkingSimState, ParkingSpot,
    PersonID, Scheduler, TimeInterval, TransitSimState, TripID, TripManager, UnzoomedAgent,
    Vehicle, WalkingSimState, FOLLOWING_DISTANCE,
};

const TIME_TO_UNPARK_ONSTRET: Duration = Duration::const_seconds(10.0);
const TIME_TO_PARK_ONSTREET: Duration = Duration::const_seconds(15.0);
const TIME_TO_UNPARK_OFFSTREET: Duration = Duration::const_seconds(5.0);
const TIME_TO_PARK_OFFSTREET: Duration = Duration::const_seconds(5.0);
const TIME_TO_WAIT_AT_STOP: Duration = Duration::const_seconds(10.0);

// TODO Do something else.
pub(crate) const BLIND_RETRY_TO_CREEP_FORWARDS: Duration = Duration::const_seconds(0.1);
pub(crate) const BLIND_RETRY_TO_REACH_END_DIST: Duration = Duration::const_seconds(5.0);

/// Simulates vehicles!
#[derive(Serialize, Deserialize, Clone)]
pub struct DrivingSimState {
    #[serde(
        serialize_with = "serialize_btreemap",
        deserialize_with = "deserialize_btreemap"
    )]
    cars: BTreeMap<CarID, Car>,
    #[serde(
        serialize_with = "serialize_btreemap",
        deserialize_with = "deserialize_btreemap"
    )]
    queues: BTreeMap<Traversable, Queue>,
    events: Vec<Event>,

    recalc_lanechanging: bool,
    handle_uber_turns: bool,
}

impl DrivingSimState {
    pub fn new(map: &Map, recalc_lanechanging: bool, handle_uber_turns: bool) -> DrivingSimState {
        let mut sim = DrivingSimState {
            cars: BTreeMap::new(),
            queues: BTreeMap::new(),
            events: Vec::new(),
            recalc_lanechanging,
            handle_uber_turns,
        };

        for l in map.all_lanes() {
            if l.lane_type.is_for_moving_vehicles() {
                let q = Queue::new(Traversable::Lane(l.id), map);
                sim.queues.insert(q.id, q);
            }
        }
        for t in map.all_turns().values() {
            if !t.between_sidewalks() {
                let q = Queue::new(Traversable::Turn(t.id), map);
                sim.queues.insert(q.id, q);
            }
        }

        sim
    }

    /// True if it worked
    pub fn start_car_on_lane(
        &mut self,
        now: Time,
        params: CreateCar,
        map: &Map,
        intersections: &IntersectionSimState,
        parking: &ParkingSimState,
        scheduler: &mut Scheduler,
    ) -> bool {
        let first_lane = params.router.head().as_lane();

        if !intersections.nobody_headed_towards(first_lane, map.get_l(first_lane).src_i) {
            return false;
        }
        if let Some(idx) = self.queues[&Traversable::Lane(first_lane)].get_idx_to_insert_car(
            params.start_dist,
            params.vehicle.length,
            now,
            &self.cars,
            &self.queues,
        ) {
            let mut car = Car {
                vehicle: params.vehicle,
                router: params.router,
                // Temporary
                state: CarState::Queued { blocked_since: now },
                last_steps: VecDeque::new(),
                started_at: now,
                total_blocked_time: Duration::ZERO,
                trip_and_person: params.trip_and_person,
            };
            if let Some(p) = params.maybe_parked_car {
                let delay = match p.spot {
                    ParkingSpot::Onstreet(_, _) => TIME_TO_UNPARK_ONSTRET,
                    ParkingSpot::Offstreet(_, _) | ParkingSpot::Lot(_, _) => {
                        TIME_TO_UNPARK_OFFSTREET
                    }
                };
                car.state = CarState::Unparking(
                    params.start_dist,
                    p.spot,
                    TimeInterval::new(now, now + delay),
                );
            } else {
                // Have to do this early
                if car.router.last_step() {
                    match car.router.maybe_handle_end(
                        params.start_dist,
                        &car.vehicle,
                        parking,
                        map,
                        car.trip_and_person,
                        &mut self.events,
                    ) {
                        None | Some(ActionAtEnd::GotoLaneEnd) => {}
                        x => {
                            panic!(
                                "Car with one-step route {:?} had unexpected result from \
                                 maybe_handle_end: {:?}",
                                car.router, x
                            );
                        }
                    }
                    // We might've decided to go park somewhere farther, so get_end_dist no longer
                    // makes sense.
                    if car.router.last_step() && params.start_dist > car.router.get_end_dist() {
                        println!(
                            "WARNING: {} wants to spawn at {}, which is past their end of {} on a \
                             one-step path {}",
                            car.vehicle.id,
                            params.start_dist,
                            car.router.get_end_dist(),
                            first_lane
                        );
                        return false;
                    }
                }

                car.state = car.crossing_state(params.start_dist, now, map);
            }
            scheduler.push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
            {
                let queue = self.queues.get_mut(&Traversable::Lane(first_lane)).unwrap();
                queue.cars.insert(idx, car.vehicle.id);
                // Don't use try_to_reserve_entry -- it's overly conservative.
                // get_idx_to_insert_car does a more detailed check of the current space usage.
                queue.reserved_length += car.vehicle.length + FOLLOWING_DISTANCE;
            }
            self.cars.insert(car.vehicle.id, car);
            return true;
        }
        false
    }
    /// State transitions for this car:
    ///
    /// Crossing -> Queued or WaitingToAdvance
    /// Unparking -> Crossing
    /// IdlingAtStop -> Crossing
    /// Queued -> last step handling (Parking or done)
    /// WaitingToAdvance -> try to advance to the next step of the path
    /// Parking -> done
    ///
    /// State transitions for other cars:
    ///
    /// Crossing -> Crossing (recalculate dist/time)
    /// Queued -> Crossing
    ///
    /// Why is it safe to process cars in any order, rather than making sure to follow the order
    /// of queues? Because of the invariant that distances should never suddenly jump when a car
    /// has entered/exiting a queue.
    /// This car might have reached the router's end distance, but maybe not -- might
    /// actually be stuck behind other cars. We have to calculate the distances right now to
    /// be sure.
    pub fn update_car(
        &mut self,
        id: CarID,
        now: Time,
        ctx: &mut Ctx,
        trips: &mut TripManager,
        transit: &mut TransitSimState,
        walking: &mut WalkingSimState,
    ) {
        let mut need_distances = {
            let car = &self.cars[&id];
            match car.state {
                CarState::Queued { .. } => car.router.last_step(),
                CarState::Parking(_, _, _) => true,
                _ => false,
            }
        };

        if !need_distances {
            // We need to mutate two different cars in one case. To avoid fighting the borrow
            // checker, temporarily move one of them out of the BTreeMap.
            let mut car = self.cars.remove(&id).unwrap();
            // Responsibility of update_car to manage scheduling stuff!
            need_distances = self.update_car_without_distances(&mut car, now, ctx, transit);
            self.cars.insert(id, car);
        }

        if need_distances {
            // Do this before removing the car!
            let dists = self.queues[&self.cars[&id].router.head()].get_car_positions(
                now,
                &self.cars,
                &self.queues,
            );
            let idx = dists.iter().position(|(c, _)| *c == id).unwrap();

            // We need to mutate two different cars in some cases. To avoid fighting the borrow
            // checker, temporarily move one of them out of the BTreeMap.
            let mut car = self.cars.remove(&id).unwrap();
            // Responsibility of update_car_with_distances to manage scheduling stuff!
            if self
                .update_car_with_distances(&mut car, &dists, idx, now, ctx, trips, transit, walking)
            {
                self.cars.insert(id, car);
            } else {
                self.delete_car_internal(&mut car, dists, idx, now, ctx);
            }
        }
    }

    // If this returns true, we need to immediately run update_car_with_distances. If we don't,
    // then the car will briefly be Queued and might immediately become something else, which
    // affects how leaders update followers.
    fn update_car_without_distances(
        &mut self,
        car: &mut Car,
        now: Time,
        ctx: &mut Ctx,
        transit: &mut TransitSimState,
    ) -> bool {
        match car.state {
            CarState::Crossing(_, _) => {
                car.state = CarState::Queued { blocked_since: now };
                if car.router.last_step() {
                    // Immediately run update_car_with_distances.
                    return true;
                }
                let queue = &self.queues[&car.router.head()];
                if queue.cars[0] == car.vehicle.id && queue.laggy_head.is_none() {
                    // Want to re-run, but no urgency about it happening immediately.
                    car.state = CarState::WaitingToAdvance { blocked_since: now };
                    if self.recalc_lanechanging {
                        car.router.opportunistically_lanechange(
                            &self.queues,
                            ctx.map,
                            self.handle_uber_turns,
                        );
                    }
                    ctx.scheduler.push(now, Command::UpdateCar(car.vehicle.id));
                }
            }
            CarState::Unparking(front, _, _) => {
                if car.router.last_step() {
                    // Actually, we need to do this first. Ignore the answer -- if we're
                    // doing something weird like vanishing or re-parking immediately
                    // (quite unlikely), the next loop will pick that up. Just trigger the
                    // side effect of choosing an end_dist.
                    car.router.maybe_handle_end(
                        front,
                        &car.vehicle,
                        ctx.parking,
                        ctx.map,
                        car.trip_and_person,
                        &mut self.events,
                    );
                }
                car.state = car.crossing_state(front, now, ctx.map);
                ctx.scheduler
                    .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
            }
            CarState::IdlingAtStop(dist, _) => {
                car.router = transit.bus_departed_from_stop(car.vehicle.id, ctx.map);
                self.events
                    .push(Event::PathAmended(car.router.get_path().clone()));
                car.state = car.crossing_state(dist, now, ctx.map);
                ctx.scheduler
                    .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));

                // Update our follower, so they know we stopped idling.
                let queue = &self.queues[&car.router.head()];
                let idx = queue
                    .cars
                    .iter()
                    .position(|c| *c == car.vehicle.id)
                    .unwrap();
                if idx != queue.cars.len() - 1 {
                    let mut follower = self.cars.get_mut(&queue.cars[idx + 1]).unwrap();
                    match follower.state {
                        CarState::Queued { blocked_since } => {
                            // If they're on their last step, they might be ending early and not
                            // right behind us.
                            if !follower.router.last_step() {
                                follower.total_blocked_time += now - blocked_since;
                                follower.state = follower.crossing_state(
                                    // Since the follower was Queued, this must be where they are.
                                    dist - car.vehicle.length - FOLLOWING_DISTANCE,
                                    now,
                                    ctx.map,
                                );
                                ctx.scheduler.update(
                                    follower.state.get_end_time(),
                                    Command::UpdateCar(follower.vehicle.id),
                                );
                            }
                        }
                        CarState::WaitingToAdvance { .. } => unreachable!(),
                        // They weren't blocked. Note that there's no way the Crossing state could
                        // jump forwards here; the leader is still in front
                        // of them.
                        CarState::Crossing(_, _)
                        | CarState::Unparking(_, _, _)
                        | CarState::Parking(_, _, _)
                        | CarState::IdlingAtStop(_, _) => {}
                    }
                }
            }
            CarState::Queued { .. } => unreachable!(),
            CarState::WaitingToAdvance { blocked_since } => {
                // 'car' is the leader.
                let from = car.router.head();
                let goto = car.router.next();
                assert!(from != goto);

                if let Traversable::Turn(t) = goto {
                    let mut speed = goto.speed_limit(ctx.map);
                    if let Some(s) = car.vehicle.max_speed {
                        speed = speed.min(s);
                    }
                    if !ctx.intersections.maybe_start_turn(
                        AgentID::Car(car.vehicle.id),
                        t,
                        speed,
                        now,
                        ctx.map,
                        ctx.scheduler,
                        Some((&car, &self.cars, &mut self.queues)),
                    ) {
                        // Don't schedule a retry here.
                        return false;
                    }
                }

                {
                    let mut queue = self.queues.get_mut(&from).unwrap();
                    assert_eq!(queue.cars.pop_front().unwrap(), car.vehicle.id);
                    queue.laggy_head = Some(car.vehicle.id);
                }

                // We do NOT need to update the follower. If they were Queued, they'll remain that
                // way, until laggy_head is None.

                let last_step = car.router.advance(
                    &car.vehicle,
                    ctx.parking,
                    ctx.map,
                    car.trip_and_person,
                    &mut self.events,
                );
                car.total_blocked_time += now - blocked_since;
                car.state = car.crossing_state(Distance::ZERO, now, ctx.map);
                ctx.scheduler
                    .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
                self.events.push(Event::AgentEntersTraversable(
                    AgentID::Car(car.vehicle.id),
                    goto,
                    if car.vehicle.vehicle_type.is_transit() {
                        Some(transit.get_passengers(car.vehicle.id).len())
                    } else {
                        None
                    },
                ));

                // Don't mark turn_finished until our back is out of the turn.
                car.last_steps.push_front(last_step);

                // Optimistically assume we'll be out of the way ASAP.
                // This is update, not push, because we might've scheduled a blind retry too
                // late, and the car actually crosses an entire new traversable in the
                // meantime.
                ctx.scheduler.update(
                    car.crossing_state_with_end_dist(
                        DistanceInterval::new_driving(
                            Distance::ZERO,
                            car.vehicle.length + FOLLOWING_DISTANCE,
                        ),
                        now,
                        ctx.map,
                    )
                    .get_end_time(),
                    Command::UpdateLaggyHead(car.vehicle.id),
                );

                self.queues
                    .get_mut(&goto)
                    .unwrap()
                    .cars
                    .push_back(car.vehicle.id);
            }
            CarState::Parking(_, _, _) => unreachable!(),
        }
        false
    }

    // Returns true if the car survives.
    fn update_car_with_distances(
        &mut self,
        car: &mut Car,
        dists: &Vec<(CarID, Distance)>,
        idx: usize,
        now: Time,
        ctx: &mut Ctx,
        trips: &mut TripManager,
        transit: &mut TransitSimState,
        walking: &mut WalkingSimState,
    ) -> bool {
        let our_dist = dists[idx].1;

        match car.state {
            CarState::Crossing(_, _)
            | CarState::Unparking(_, _, _)
            | CarState::IdlingAtStop(_, _)
            | CarState::WaitingToAdvance { .. } => unreachable!(),
            CarState::Queued { blocked_since } => {
                match car.router.maybe_handle_end(
                    our_dist,
                    &car.vehicle,
                    ctx.parking,
                    ctx.map,
                    car.trip_and_person,
                    &mut self.events,
                ) {
                    Some(ActionAtEnd::VanishAtBorder(i)) => {
                        car.total_blocked_time += now - blocked_since;
                        // Don't do this for buses
                        if car.trip_and_person.is_some() {
                            trips.car_or_bike_reached_border(
                                now,
                                car.vehicle.id,
                                i,
                                car.total_blocked_time,
                                ctx,
                            );
                        }
                        false
                    }
                    Some(ActionAtEnd::GiveUpOnParking) => {
                        car.total_blocked_time += now - blocked_since;
                        trips.cancel_trip(
                            now,
                            car.trip_and_person.unwrap().0,
                            format!("no available parking anywhere"),
                            // If we couldn't find parking normally, doesn't make sense to warp the
                            // car to the destination. There's no parking!
                            None,
                            ctx,
                        );
                        false
                    }
                    Some(ActionAtEnd::StartParking(spot)) => {
                        car.total_blocked_time += now - blocked_since;
                        let delay = match spot {
                            ParkingSpot::Onstreet(_, _) => TIME_TO_PARK_ONSTREET,
                            ParkingSpot::Offstreet(_, _) | ParkingSpot::Lot(_, _) => {
                                TIME_TO_PARK_OFFSTREET
                            }
                        };
                        car.state =
                            CarState::Parking(our_dist, spot, TimeInterval::new(now, now + delay));
                        // If we don't do this, then we might have another car creep up
                        // behind, see the spot free, and start parking too. This can
                        // happen with multiple lanes and certain vehicle lengths.
                        ctx.parking.reserve_spot(spot);
                        ctx.scheduler
                            .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
                        true
                    }
                    Some(ActionAtEnd::GotoLaneEnd) => {
                        car.total_blocked_time += now - blocked_since;
                        car.state = car.crossing_state(our_dist, now, ctx.map);
                        ctx.scheduler
                            .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
                        true
                    }
                    Some(ActionAtEnd::StopBiking(bike_rack)) => {
                        car.total_blocked_time += now - blocked_since;
                        trips.bike_reached_end(
                            now,
                            car.vehicle.id,
                            bike_rack,
                            car.total_blocked_time,
                            ctx.map,
                            ctx.scheduler,
                        );
                        false
                    }
                    Some(ActionAtEnd::BusAtStop) => {
                        car.total_blocked_time += now - blocked_since;
                        if transit.bus_arrived_at_stop(now, car.vehicle.id, trips, walking, ctx) {
                            car.state = CarState::IdlingAtStop(
                                our_dist,
                                TimeInterval::new(now, now + TIME_TO_WAIT_AT_STOP),
                            );
                            ctx.scheduler
                                .push(car.state.get_end_time(), Command::UpdateCar(car.vehicle.id));
                            true
                        } else {
                            // Vanishing at a border
                            false
                        }
                    }
                    None => {
                        ctx.scheduler.push(
                            now + BLIND_RETRY_TO_REACH_END_DIST,
                            Command::UpdateCar(car.vehicle.id),
                        );

                        // TODO For now, always use BLIND_RETRY_TO_REACH_END_DIST. Measured things
                        // to be slower otherwise. :(
                        /*
                        // If this car wasn't blocked at all, when would it reach its goal?
                        let ideal_end_time = match car.crossing_state(our_dist, now, map) {
                            CarState::Crossing(time_int, _) => time_int.end,
                            _ => unreachable!(),
                        };
                        if ideal_end_time == now {
                            // Haha, no such luck. We're super super close to the goal, but not
                            // quite there yet.
                            scheduler.push(now + BLIND_RETRY_TO_REACH_END_DIST, Command::UpdateCar(car.vehicle.id));
                        } else {
                            scheduler.push(ideal_end_time, Command::UpdateCar(car.vehicle.id));
                        }
                        // TODO For cars stuck on their last step, this will spam a fair bit. But
                        // that should be pretty rare.
                        */

                        true
                    }
                }
            }
            CarState::Parking(_, spot, _) => {
                ctx.parking.add_parked_car(ParkedCar {
                    vehicle: car.vehicle.clone(),
                    spot,
                    parked_since: now,
                });
                trips.car_reached_parking_spot(
                    now,
                    car.vehicle.id,
                    spot,
                    car.total_blocked_time,
                    ctx,
                );
                false
            }
        }
    }

    pub fn delete_car(&mut self, c: CarID, now: Time, ctx: &mut Ctx) -> Vehicle {
        let dists = self.queues[&self.cars[&c].router.head()].get_car_positions(
            now,
            &self.cars,
            &self.queues,
        );
        let idx = dists.iter().position(|(id, _)| *id == c).unwrap();
        let mut car = self.cars.remove(&c).unwrap();

        // Hacks to delete cars that're mid-turn
        if let Traversable::Turn(_) = car.router.head() {
            let queue = self.queues.get_mut(&car.router.head()).unwrap();
            queue.reserved_length += car.vehicle.length + FOLLOWING_DISTANCE;
        }
        if let Some(Traversable::Turn(t)) = car.router.maybe_next() {
            ctx.intersections.cancel_request(AgentID::Car(c), t);
        }

        self.delete_car_internal(&mut car, dists, idx, now, ctx);
        // delete_car_internal cancels UpdateLaggyHead
        ctx.scheduler.cancel(Command::UpdateCar(c));
        car.vehicle
    }

    fn delete_car_internal(
        &mut self,
        car: &mut Car,
        dists: Vec<(CarID, Distance)>,
        idx: usize,
        now: Time,
        ctx: &mut Ctx,
    ) {
        {
            let queue = self.queues.get_mut(&car.router.head()).unwrap();
            assert_eq!(queue.cars.remove(idx).unwrap(), car.vehicle.id);
            // trim_last_steps doesn't actually include the current queue!
            queue.free_reserved_space(car);
            let i = match queue.id {
                Traversable::Lane(l) => ctx.map.get_l(l).src_i,
                Traversable::Turn(t) => t.parent,
            };
            ctx.intersections
                .space_freed(now, i, ctx.scheduler, ctx.map);
        }

        ctx.intersections.vehicle_gone(car.vehicle.id);

        // We might be vanishing while partly clipping into other stuff.
        self.trim_last_steps(car, now, car.last_steps.len(), ctx);

        // We might've scheduled one of those using BLIND_RETRY_TO_CREEP_FORWARDS.
        ctx.scheduler
            .cancel(Command::UpdateLaggyHead(car.vehicle.id));

        // Update the follower so that they don't suddenly jump forwards.
        if idx != dists.len() - 1 {
            let (follower_id, follower_dist) = dists[idx + 1];
            let mut follower = self.cars.get_mut(&follower_id).unwrap();
            // TODO If the leader vanished at a border node, this still jumps a bit -- the
            // lead car's back is still sticking out. Need to still be bound by them, even
            // though they don't exist! If the leader just parked, then we're fine.
            match follower.state {
                CarState::Queued { blocked_since } => {
                    // Prevent them from jumping forwards.
                    follower.total_blocked_time += now - blocked_since;
                    follower.state = follower.crossing_state(follower_dist, now, ctx.map);
                    ctx.scheduler.update(
                        follower.state.get_end_time(),
                        Command::UpdateCar(follower_id),
                    );
                }
                CarState::Crossing(_, _) => {
                    // If the follower was still Crossing, they might not've been blocked
                    // by leader yet. In that case, recalculating their Crossing state is a
                    // no-op.
                    follower.state = follower.crossing_state(follower_dist, now, ctx.map);
                    ctx.scheduler.update(
                        follower.state.get_end_time(),
                        Command::UpdateCar(follower_id),
                    );
                }
                // They weren't blocked
                CarState::Unparking(_, _, _)
                | CarState::Parking(_, _, _)
                | CarState::IdlingAtStop(_, _) => {}
                CarState::WaitingToAdvance { .. } => unreachable!(),
            }
        }
    }

    pub fn update_laggy_head(&mut self, id: CarID, now: Time, ctx: &mut Ctx) {
        let currently_on = self.cars[&id].router.head();
        let current_dists =
            self.queues[&currently_on].get_car_positions(now, &self.cars, &self.queues);
        // This car must be the tail.
        let dist_along_last = {
            let (last_id, dist) = current_dists.last().unwrap();
            if id != *last_id {
                panic!(
                    "At {} on {:?}, laggy head {} isn't the last on the lane; it's {}",
                    now, currently_on, id, last_id
                );
            }
            *dist
        };

        // Trim off as many of the oldest last_steps as we've made distance.
        let mut dist_left_to_cleanup = self.cars[&id].vehicle.length + FOLLOWING_DISTANCE;
        dist_left_to_cleanup -= dist_along_last;
        let mut num_to_trim = None;
        for (idx, step) in self.cars[&id].last_steps.iter().enumerate() {
            if dist_left_to_cleanup <= Distance::ZERO {
                num_to_trim = Some(self.cars[&id].last_steps.len() - idx);
                break;
            }
            dist_left_to_cleanup -= step.length(ctx.map);
        }

        if let Some(n) = num_to_trim {
            let mut car = self.cars.remove(&id).unwrap();
            self.trim_last_steps(&mut car, now, n, ctx);
            self.cars.insert(id, car);
        }

        if !self.cars[&id].last_steps.is_empty() {
            // Might have to retry again later.
            let retry_at = self.cars[&id]
                .crossing_state_with_end_dist(
                    // Update again when we've completely cleared all last_steps. We could be more
                    // precise and do it sooner when we clear the last step, but a little delay is
                    // fine for correctness.
                    DistanceInterval::new_driving(
                        dist_along_last,
                        self.cars[&id].vehicle.length + FOLLOWING_DISTANCE,
                    ),
                    now,
                    ctx.map,
                )
                .get_end_time();
            // Sometimes due to rounding, retry_at will be exactly time, but we really need to
            // wait a bit longer.
            // TODO Smarter retry based on states and stuckness?
            if retry_at > now {
                ctx.scheduler.push(retry_at, Command::UpdateLaggyHead(id));
            } else {
                // If we look up car positions before this retry happens, weird things can
                // happen -- the laggy head could be well clear of the old queue by then. Make
                // sure to handle that there. Consequences of this retry being long? A follower
                // will wait a bit before advancing.
                ctx.scheduler.push(
                    now + BLIND_RETRY_TO_CREEP_FORWARDS,
                    Command::UpdateLaggyHead(id),
                );
            }
        }
    }

    // Caller has to figure out how many steps to trim!
    fn trim_last_steps(&mut self, car: &mut Car, now: Time, n: usize, ctx: &mut Ctx) {
        for i in 0..n {
            let on = car.last_steps.pop_back().unwrap();
            let old_queue = self.queues.get_mut(&on).unwrap();
            assert_eq!(old_queue.laggy_head, Some(car.vehicle.id));
            old_queue.laggy_head = None;
            match on {
                Traversable::Turn(t) => {
                    ctx.intersections.turn_finished(
                        now,
                        AgentID::Car(car.vehicle.id),
                        t,
                        ctx.scheduler,
                        ctx.map,
                    );
                }
                Traversable::Lane(l) => {
                    old_queue.free_reserved_space(car);
                    ctx.intersections.space_freed(
                        now,
                        ctx.map.get_l(l).src_i,
                        ctx.scheduler,
                        ctx.map,
                    );
                }
            }

            if i == 0 {
                // Wake up the follower
                if let Some(follower_id) = old_queue.cars.front() {
                    let mut follower = self.cars.get_mut(&follower_id).unwrap();

                    match follower.state {
                        CarState::Queued { blocked_since } => {
                            // If they're on their last step, they might be ending early and not
                            // right behind us.
                            if !follower.router.last_step() {
                                // The follower has been smoothly following while the laggy head
                                // gets out of the way. So
                                // immediately promote them to WaitingToAdvance.
                                follower.state = CarState::WaitingToAdvance { blocked_since };
                                if self.recalc_lanechanging {
                                    follower.router.opportunistically_lanechange(
                                        &self.queues,
                                        ctx.map,
                                        self.handle_uber_turns,
                                    );
                                }
                                ctx.scheduler
                                    .push(now, Command::UpdateCar(follower.vehicle.id));
                            }
                        }
                        CarState::WaitingToAdvance { .. } => unreachable!(),
                        // They weren't blocked. Note that there's no way the Crossing state
                        // could jump forwards here; the leader
                        // vanished from the end of the traversable.
                        CarState::Crossing(_, _)
                        | CarState::Unparking(_, _, _)
                        | CarState::Parking(_, _, _)
                        | CarState::IdlingAtStop(_, _) => {}
                    }
                }
            } else {
                // Only the last step we cleared could possibly have cars. Any intermediates,
                // this car was previously completely blocking them.
                assert!(old_queue.cars.is_empty());
            }
        }
    }

    pub fn get_unzoomed_agents(&self, now: Time, map: &Map) -> Vec<UnzoomedAgent> {
        let mut result = Vec::new();

        for queue in self.queues.values() {
            if queue.cars.is_empty() {
                continue;
            }

            for (c, dist) in queue.get_car_positions(now, &self.cars, &self.queues) {
                let car = &self.cars[&c];
                result.push(UnzoomedAgent {
                    vehicle_type: Some(car.vehicle.vehicle_type),
                    pos: match queue.id.dist_along(dist, map) {
                        Ok((pt, _)) => pt,
                        Err(err) => panic!(
                            "At {}, invalid dist_along of {} for queue {}: {}",
                            now, dist, queue.id, err
                        ),
                    },
                    person: car.trip_and_person.map(|(_, p)| p),
                    parking: car.is_parking(),
                });
            }
        }

        result
    }

    pub fn does_car_exist(&self, id: CarID) -> bool {
        self.cars.contains_key(&id)
    }

    pub fn get_all_draw_cars(
        &self,
        now: Time,
        map: &Map,
        transit: &TransitSimState,
    ) -> Vec<DrawCarInput> {
        let mut result = Vec::new();
        for queue in self.queues.values() {
            result.extend(
                queue
                    .get_car_positions(now, &self.cars, &self.queues)
                    .into_iter()
                    .map(|(id, dist)| self.cars[&id].get_draw_car(dist, now, map, transit)),
            );
        }
        result
    }

    /// This is about as expensive as get_draw_cars_on.
    pub fn get_single_draw_car(
        &self,
        id: CarID,
        now: Time,
        map: &Map,
        transit: &TransitSimState,
    ) -> Option<DrawCarInput> {
        let car = self.cars.get(&id)?;
        self.get_draw_cars_on(now, car.router.head(), map, transit)
            .into_iter()
            .find(|d| d.id == id)
    }

    pub fn get_draw_cars_on(
        &self,
        now: Time,
        on: Traversable,
        map: &Map,
        transit: &TransitSimState,
    ) -> Vec<DrawCarInput> {
        match self.queues.get(&on) {
            Some(q) => q
                .get_car_positions(now, &self.cars, &self.queues)
                .into_iter()
                .map(|(id, dist)| self.cars[&id].get_draw_car(dist, now, map, transit))
                .collect(),
            None => Vec::new(),
        }
    }

    pub fn debug_car(&self, id: CarID) {
        if let Some(ref car) = self.cars.get(&id) {
            println!("{}", abstutil::to_json(car));
            println!("State: {:?}", car.state);
        } else {
            println!("{} is parked somewhere", id);
        }
    }

    pub fn debug_lane(&self, id: LaneID) {
        if let Some(ref queue) = self.queues.get(&Traversable::Lane(id)) {
            println!("{}", abstutil::to_json(queue));
        }
    }

    pub fn agent_properties(&self, id: CarID, now: Time) -> AgentProperties {
        let car = self.cars.get(&id).unwrap();
        let path = car.router.get_path();
        let time_spent_waiting = car.state.time_spent_waiting(now);

        AgentProperties {
            total_time: now - car.started_at,
            waiting_here: time_spent_waiting,
            total_waiting: car.total_blocked_time + time_spent_waiting,
            dist_crossed: path.crossed_so_far(),
            total_dist: path.total_length(),
            lanes_crossed: path.lanes_crossed_so_far(),
            total_lanes: path.total_lanes(),
        }
    }

    pub fn get_path(&self, id: CarID) -> Option<&Path> {
        let car = self.cars.get(&id)?;
        Some(car.router.get_path())
    }
    pub fn get_all_driving_paths(&self) -> Vec<&Path> {
        self.cars
            .values()
            .map(|car| car.router.get_path())
            .collect()
    }

    pub fn trace_route(
        &self,
        now: Time,
        id: CarID,
        map: &Map,
        dist_ahead: Option<Distance>,
    ) -> Option<PolyLine> {
        let car = self.cars.get(&id)?;
        let front = self.queues[&car.router.head()]
            .get_car_positions(now, &self.cars, &self.queues)
            .into_iter()
            .find(|(c, _)| *c == id)
            .unwrap()
            .1;
        car.router.get_path().trace(map, front, dist_ahead)
    }

    pub fn percent_along_route(&self, id: CarID) -> f64 {
        self.cars[&id].router.get_path().percent_dist_crossed()
    }

    pub fn get_owner_of_car(&self, id: CarID) -> Option<PersonID> {
        let car = self.cars.get(&id)?;
        car.vehicle.owner
    }

    // TODO Clean this up
    pub fn find_blockage_front(
        &self,
        start: CarID,
        map: &Map,
        intersections: &IntersectionSimState,
    ) -> String {
        let mut seen_intersections = HashSet::new();

        let mut current_head = start;
        let mut current_lane = match self.cars[&start].router.head() {
            Traversable::Lane(l) => l,
            Traversable::Turn(_) => {
                return "TODO Doesn't support starting from a turn yet".to_string();
            }
        };
        loop {
            current_head =
                if let Some(c) = self.queues[&Traversable::Lane(current_lane)].cars.get(0) {
                    *c
                } else {
                    return format!("no gridlock, {}", current_head);
                };

            let i = map.get_l(current_lane).dst_i;
            if seen_intersections.contains(&i) {
                return format!("Gridlock near {}! {:?}", i, seen_intersections);
            }
            seen_intersections.insert(i);

            // Why isn't current_head proceeding? Pedestrians can never get stuck in an
            // intersection.
            if intersections
                .get_accepted_agents(i)
                .iter()
                .any(|(a, _)| matches!(a, AgentID::Car(_)))
            {
                return format!("someone's turning in {} still", i);
            }

            current_lane = if let Some(PathStep::Lane(l)) = self.cars[&current_head]
                .router
                .get_path()
                .get_steps()
                .get(2)
            {
                *l
            } else {
                return format!(
                    "{} is near end of path, probably tmp blockage",
                    current_head
                );
            };

            // Lack of capacity?
            if self.queues[&Traversable::Lane(current_lane)].room_for_car(&self.cars[&current_head])
            {
                return format!("{} is about to proceed, tmp blockage", current_head);
            }
        }
    }

    pub fn collect_events(&mut self) -> Vec<Event> {
        std::mem::replace(&mut self.events, Vec::new())
    }

    pub fn target_lane_penalty(&self, l: LaneID) -> (usize, usize) {
        self.queues[&Traversable::Lane(l)].target_lane_penalty()
    }

    pub fn find_trips_to_edited_parking(
        &self,
        spots: BTreeSet<ParkingSpot>,
    ) -> Vec<(AgentID, TripID)> {
        let mut affected = Vec::new();
        for car in self.cars.values() {
            if let Some(spot) = car.router.get_parking_spot_goal() {
                if !spots.contains(spot) {
                    // Buses don't park
                    affected.push((AgentID::Car(car.vehicle.id), car.trip_and_person.unwrap().0));
                }
            }
        }
        affected
    }

    pub fn all_waiting_people(&self, now: Time, delays: &mut BTreeMap<PersonID, Duration>) {
        for c in self.cars.values() {
            if let Some((_, person)) = c.trip_and_person {
                let delay = c.state.time_spent_waiting(now);
                if delay > Duration::ZERO {
                    delays.insert(person, delay);
                }
            }
        }
    }
}