1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
use std::cmp::Ordering;
use std::collections::{BinaryHeap, HashMap};

use geom::{Duration, Speed};

use crate::pathfind::{zone_cost, WalkingNode};
use crate::{BuildingID, LaneType, Map, PathConstraints, Traversable};

#[derive(Clone)]
pub struct WalkingOptions {
    /// If true, allow walking on shoulders.
    pub allow_shoulders: bool,
    pub walking_speed: Speed,
}

impl WalkingOptions {
    pub fn default() -> WalkingOptions {
        WalkingOptions {
            allow_shoulders: true,
            walking_speed: WalkingOptions::default_speed(),
        }
    }

    pub fn common_speeds() -> Vec<(&'static str, Speed)> {
        vec![
            ("3 mph (average for an adult)", Speed::miles_per_hour(3.0)),
            ("1 mph (manual wheelchair)", Speed::miles_per_hour(1.0)),
            ("5 mph (moderate jog)", Speed::miles_per_hour(5.0)),
        ]
    }

    pub fn default_speed() -> Speed {
        WalkingOptions::common_speeds()[0].1
    }
}

#[derive(PartialEq, Eq)]
struct Item {
    cost: Duration,
    node: WalkingNode,
}
impl PartialOrd for Item {
    fn partial_cmp(&self, other: &Item) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Item {
    fn cmp(&self, other: &Item) -> Ordering {
        // BinaryHeap is a max-heap, so reverse the comparison to get smallest times first.
        let ord = other.cost.cmp(&self.cost);
        if ord != Ordering::Equal {
            return ord;
        }
        self.node.cmp(&other.node)
    }
}

/// Starting from some initial buildings, calculate the cost to all others. If a destination isn't
/// reachable, it won't be included in the results. Ignore results greater than the time_limit
/// away.
///
/// If all of the start buildings are on the shoulder of a road and `!opts.allow_shoulders`, then
/// the results will always be empty.
pub fn all_walking_costs_from(
    map: &Map,
    starts: Vec<BuildingID>,
    time_limit: Duration,
    opts: WalkingOptions,
) -> HashMap<BuildingID, Duration> {
    if !opts.allow_shoulders
        && starts
            .iter()
            .all(|b| map.get_l(map.get_b(*b).sidewalk()).lane_type == LaneType::Shoulder)
    {
        return HashMap::new();
    }

    let mut queue: BinaryHeap<Item> = BinaryHeap::new();
    for b in starts {
        queue.push(Item {
            cost: Duration::ZERO,
            node: WalkingNode::closest(map.get_b(b).sidewalk_pos, map),
        });
    }

    let mut cost_per_node: HashMap<WalkingNode, Duration> = HashMap::new();
    while let Some(current) = queue.pop() {
        if cost_per_node.contains_key(&current.node) {
            continue;
        }
        if current.cost > time_limit {
            continue;
        }
        cost_per_node.insert(current.node, current.cost);

        let (r, is_dst_i) = match current.node {
            WalkingNode::SidewalkEndpoint(r, is_dst_i) => (r, is_dst_i),
            _ => unreachable!(),
        };
        let lane = map.get_l(r.must_get_sidewalk(map));
        // Cross the lane
        if opts.allow_shoulders || lane.lane_type != LaneType::Shoulder {
            queue.push(Item {
                cost: current.cost
                    + lane.length()
                        / Traversable::Lane(lane.id).max_speed_along(
                            Some(opts.walking_speed),
                            PathConstraints::Pedestrian,
                            map,
                        ),
                node: WalkingNode::SidewalkEndpoint(r, !is_dst_i),
            });
        }
        // All turns from the lane
        for turn in map.get_turns_for(lane.id, PathConstraints::Pedestrian) {
            if (turn.id.parent == lane.dst_i) != is_dst_i {
                continue;
            }
            queue.push(Item {
                cost: current.cost
                    + turn.geom.length()
                        / Traversable::Turn(turn.id).max_speed_along(
                            Some(opts.walking_speed),
                            PathConstraints::Pedestrian,
                            map,
                        )
                    + zone_cost(turn.id.to_movement(map), PathConstraints::Pedestrian, map),
                node: WalkingNode::SidewalkEndpoint(
                    map.get_l(turn.id.dst).get_directed_parent(),
                    map.get_l(turn.id.dst).dst_i == turn.id.parent,
                ),
            });
        }
    }

    let mut results = HashMap::new();
    // Assign every building a cost based on which end of the sidewalk it's closest to
    // TODO We could try to get a little more accurate by accounting for the distance from that
    // end of the sidewalk to the building
    for b in map.all_buildings() {
        if let Some(cost) = cost_per_node.get(&WalkingNode::closest(b.sidewalk_pos, map)) {
            let sidewalk_len = map.get_l(b.sidewalk()).length();
            let bldg_dist = b.sidewalk_pos.dist_along();
            let distance_from_closest_node = if sidewalk_len - bldg_dist <= bldg_dist {
                bldg_dist
            } else {
                sidewalk_len - bldg_dist
            };
            let total_cost = *cost + distance_from_closest_node / opts.walking_speed;
            results.insert(b.id, total_cost);
        }
    }

    results
}