1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
use std::collections::{BTreeMap, BTreeSet, BinaryHeap, HashMap};

use enum_dispatch::enum_dispatch;
use serde::{Deserialize, Serialize};

use abstutil::{
    deserialize_btreemap, deserialize_multimap, serialize_btreemap, serialize_multimap, MultiMap,
    Timer,
};
use geom::{Distance, PolyLine, Pt2D};
use map_model::{
    BuildingID, Lane, LaneID, LaneType, Map, OffstreetParking, ParkingLotID, PathConstraints,
    PathStep, Position, Traversable, TurnID,
};

use crate::{CarID, CarStatus, DrawCarInput, Event, ParkedCar, ParkingSpot, PersonID, Vehicle};

/// Manages the state of parked cars. There are two implementations:
/// - NormalParkingSimState allows only one vehicle per ParkingSpot defined in the map
/// - InfiniteParkingSimState pretends every building has infinite capacity, and onstreet parking is
///   ignored
#[enum_dispatch(ParkingSimState)]
pub trait ParkingSim {
    // Returns any cars that got very abruptly evicted from existence
    fn handle_live_edits(&mut self, map: &Map, timer: &mut Timer) -> Vec<ParkedCar>;
    fn get_free_onstreet_spots(&self, l: LaneID) -> Vec<ParkingSpot>;
    fn get_free_offstreet_spots(&self, b: BuildingID) -> Vec<ParkingSpot>;
    fn get_free_lot_spots(&self, pl: ParkingLotID) -> Vec<ParkingSpot>;
    fn reserve_spot(&mut self, spot: ParkingSpot);
    fn remove_parked_car(&mut self, p: ParkedCar);
    fn add_parked_car(&mut self, p: ParkedCar);
    fn get_draw_cars(&self, id: LaneID, map: &Map) -> Vec<DrawCarInput>;
    fn get_draw_cars_in_lots(&self, id: LaneID, map: &Map) -> Vec<DrawCarInput>;
    fn get_draw_car(&self, id: CarID, map: &Map) -> Option<DrawCarInput>;
    // There's no DrawCarInput for cars parked offstreet, so we need this.
    fn canonical_pt(&self, id: CarID, map: &Map) -> Option<Pt2D>;
    fn get_all_draw_cars(&self, map: &Map) -> Vec<DrawCarInput>;
    fn is_free(&self, spot: ParkingSpot) -> bool;
    fn get_car_at_spot(&self, spot: ParkingSpot) -> Option<&ParkedCar>;
    // The vehicle's front is currently at the given driving_pos. Returns all valid spots and their
    // driving position.
    fn get_all_free_spots(
        &self,
        driving_pos: Position,
        vehicle: &Vehicle,
        // Either the building where a seeded car starts or the target of a trip. For filtering
        // private spots.
        target: BuildingID,
        map: &Map,
    ) -> Vec<(ParkingSpot, Position)>;
    fn spot_to_driving_pos(&self, spot: ParkingSpot, vehicle: &Vehicle, map: &Map) -> Position;
    fn spot_to_sidewalk_pos(&self, spot: ParkingSpot, map: &Map) -> Position;
    fn get_owner_of_car(&self, id: CarID) -> Option<PersonID>;
    fn lookup_parked_car(&self, id: CarID) -> Option<&ParkedCar>;
    // (Filled, available)
    fn get_all_parking_spots(&self) -> (Vec<ParkingSpot>, Vec<ParkingSpot>);
    // Unrealistically assumes the driver has knowledge of currently free parking spots, even if
    // they're far away. Since they don't reserve the spot in advance, somebody else can still beat
    // them there, producing some nice, realistic churn if there's too much contention.
    // The first PathStep is the turn after start, NOT PathStep::Lane(start).
    fn path_to_free_parking_spot(
        &self,
        start: LaneID,
        vehicle: &Vehicle,
        target: BuildingID,
        map: &Map,
    ) -> Option<(Vec<PathStep>, ParkingSpot, Position)>;
    fn collect_events(&mut self) -> Vec<Event>;
    fn all_parked_car_positions(&self, map: &Map) -> Vec<(Position, PersonID)>;
    fn bldg_to_parked_cars(&self, b: BuildingID) -> Vec<CarID>;
}

#[enum_dispatch]
#[derive(Serialize, Deserialize, Clone)]
pub enum ParkingSimState {
    Normal(NormalParkingSimState),
    Infinite(InfiniteParkingSimState),
}

impl ParkingSimState {
    /// Counterintuitive: any spots located in blackholes are just not represented here. If somebody
    /// tries to drive from a blackholed spot, they couldn't reach most places.
    pub fn new(map: &Map, infinite: bool, timer: &mut Timer) -> ParkingSimState {
        if infinite {
            ParkingSimState::Infinite(InfiniteParkingSimState::new(map))
        } else {
            ParkingSimState::Normal(NormalParkingSimState::new(map, timer))
        }
    }

    pub fn is_infinite(&self) -> bool {
        match self {
            ParkingSimState::Normal(_) => false,
            ParkingSimState::Infinite(_) => true,
        }
    }
}

#[derive(Serialize, Deserialize, Clone)]
pub struct NormalParkingSimState {
    #[serde(
        serialize_with = "serialize_btreemap",
        deserialize_with = "deserialize_btreemap"
    )]
    parked_cars: BTreeMap<CarID, ParkedCar>,
    #[serde(
        serialize_with = "serialize_btreemap",
        deserialize_with = "deserialize_btreemap"
    )]
    occupants: BTreeMap<ParkingSpot, CarID>,
    reserved_spots: BTreeSet<ParkingSpot>,

    // On-street
    onstreet_lanes: BTreeMap<LaneID, ParkingLane>,
    // TODO Really this could be 0, 1, or 2 lanes. Full MultiMap is overkill.
    #[serde(
        serialize_with = "serialize_multimap",
        deserialize_with = "deserialize_multimap"
    )]
    driving_to_parking_lanes: MultiMap<LaneID, LaneID>,

    // Off-street
    num_spots_per_offstreet: BTreeMap<BuildingID, usize>,
    // Cache dist_along
    #[serde(
        serialize_with = "serialize_multimap",
        deserialize_with = "deserialize_multimap"
    )]
    driving_to_offstreet: MultiMap<LaneID, (BuildingID, Distance)>,

    // Parking lots
    num_spots_per_lot: BTreeMap<ParkingLotID, usize>,
    #[serde(
        serialize_with = "serialize_multimap",
        deserialize_with = "deserialize_multimap"
    )]
    driving_to_lots: MultiMap<LaneID, ParkingLotID>,

    events: Vec<Event>,
}

impl NormalParkingSimState {
    fn new(map: &Map, timer: &mut Timer) -> NormalParkingSimState {
        let mut sim = NormalParkingSimState {
            parked_cars: BTreeMap::new(),
            occupants: BTreeMap::new(),
            reserved_spots: BTreeSet::new(),

            onstreet_lanes: BTreeMap::new(),
            driving_to_parking_lanes: MultiMap::new(),
            num_spots_per_offstreet: BTreeMap::new(),
            driving_to_offstreet: MultiMap::new(),
            num_spots_per_lot: BTreeMap::new(),
            driving_to_lots: MultiMap::new(),

            events: Vec::new(),
        };
        for l in map.all_lanes() {
            if let Some(lane) = ParkingLane::new(l, map, timer) {
                sim.driving_to_parking_lanes.insert(lane.driving_lane, l.id);
                sim.onstreet_lanes.insert(lane.parking_lane, lane);
            }
        }
        for b in map.all_buildings() {
            if let Some((pos, _)) = b.driving_connection(map) {
                if !map.get_l(pos.lane()).driving_blackhole {
                    let num_spots = b.num_parking_spots();
                    if num_spots > 0 {
                        sim.num_spots_per_offstreet.insert(b.id, num_spots);
                        sim.driving_to_offstreet
                            .insert(pos.lane(), (b.id, pos.dist_along()));
                    }
                }
            }
        }
        for pl in map.all_parking_lots() {
            if !map.get_l(pl.driving_pos.lane()).driving_blackhole {
                sim.num_spots_per_lot.insert(pl.id, pl.capacity());
                sim.driving_to_lots.insert(pl.driving_pos.lane(), pl.id);
            }
        }

        sim
    }
}

impl ParkingSim for NormalParkingSimState {
    fn handle_live_edits(&mut self, map: &Map, timer: &mut Timer) -> Vec<ParkedCar> {
        let (filled_before, _) = self.get_all_parking_spots();
        let new = NormalParkingSimState::new(map, timer);
        let (_, avail_after) = new.get_all_parking_spots();
        let avail_after: BTreeSet<ParkingSpot> = avail_after.into_iter().collect();

        // Use the new spots
        self.onstreet_lanes = new.onstreet_lanes;
        self.driving_to_parking_lanes = new.driving_to_parking_lanes;
        self.num_spots_per_offstreet = new.num_spots_per_offstreet;
        self.driving_to_offstreet = new.driving_to_offstreet;
        self.num_spots_per_lot = new.num_spots_per_lot;
        self.driving_to_lots = new.driving_to_lots;

        // For every spot filled or reserved before, make sure that same spot still exists. If not,
        // evict that car.
        let mut evicted = Vec::new();
        for spot in filled_before {
            if !avail_after.contains(&spot) {
                let car = self.occupants.remove(&spot).unwrap();
                evicted.push(self.parked_cars.remove(&car).unwrap());
            }
        }

        // TODO How do we handle reserved_spots?
        self.reserved_spots = self
            .reserved_spots
            .difference(&avail_after)
            .cloned()
            .collect();

        evicted
    }

    fn get_free_onstreet_spots(&self, l: LaneID) -> Vec<ParkingSpot> {
        let mut spots: Vec<ParkingSpot> = Vec::new();
        if let Some(lane) = self.onstreet_lanes.get(&l) {
            for spot in lane.spots() {
                if self.is_free(spot) {
                    spots.push(spot);
                }
            }
        }
        spots
    }

    fn get_free_offstreet_spots(&self, b: BuildingID) -> Vec<ParkingSpot> {
        let mut spots: Vec<ParkingSpot> = Vec::new();
        for idx in 0..self.num_spots_per_offstreet.get(&b).cloned().unwrap_or(0) {
            let spot = ParkingSpot::Offstreet(b, idx);
            if self.is_free(spot) {
                spots.push(spot);
            }
        }
        spots
    }

    fn get_free_lot_spots(&self, pl: ParkingLotID) -> Vec<ParkingSpot> {
        let mut spots: Vec<ParkingSpot> = Vec::new();
        for idx in 0..self.num_spots_per_lot.get(&pl).cloned().unwrap_or(0) {
            let spot = ParkingSpot::Lot(pl, idx);
            if self.is_free(spot) {
                spots.push(spot);
            }
        }
        spots
    }

    fn reserve_spot(&mut self, spot: ParkingSpot) {
        assert!(self.is_free(spot));
        self.reserved_spots.insert(spot);

        // Sanity check the spot exists
        match spot {
            ParkingSpot::Onstreet(l, idx) => {
                assert!(idx < self.onstreet_lanes[&l].spot_dist_along.len());
            }
            ParkingSpot::Offstreet(b, idx) => {
                assert!(idx < self.num_spots_per_offstreet[&b]);
            }
            ParkingSpot::Lot(pl, idx) => {
                assert!(idx < self.num_spots_per_lot[&pl]);
            }
        }
    }

    fn remove_parked_car(&mut self, p: ParkedCar) {
        self.parked_cars
            .remove(&p.vehicle.id)
            .expect("remove_parked_car missing from parked_cars");
        self.occupants
            .remove(&p.spot)
            .expect("remove_parked_car missing from occupants");
        self.events
            .push(Event::CarLeftParkingSpot(p.vehicle.id, p.spot));
    }

    fn add_parked_car(&mut self, p: ParkedCar) {
        self.events
            .push(Event::CarReachedParkingSpot(p.vehicle.id, p.spot));

        assert!(self.reserved_spots.remove(&p.spot));

        assert!(!self.occupants.contains_key(&p.spot));
        self.occupants.insert(p.spot, p.vehicle.id);

        assert!(!self.parked_cars.contains_key(&p.vehicle.id));
        self.parked_cars.insert(p.vehicle.id, p);
    }

    fn get_draw_cars(&self, id: LaneID, map: &Map) -> Vec<DrawCarInput> {
        let mut cars = Vec::new();
        if let Some(ref lane) = self.onstreet_lanes.get(&id) {
            for spot in lane.spots() {
                if let Some(car) = self.occupants.get(&spot) {
                    cars.push(self.get_draw_car(*car, map).unwrap());
                }
            }
        }
        cars
    }

    fn get_draw_cars_in_lots(&self, id: LaneID, map: &Map) -> Vec<DrawCarInput> {
        let mut cars = Vec::new();
        for pl in self.driving_to_lots.get(id) {
            for idx in 0..self.num_spots_per_lot[&pl] {
                if let Some(car) = self.occupants.get(&ParkingSpot::Lot(*pl, idx)) {
                    if let Some(d) = self.get_draw_car(*car, map) {
                        cars.push(d);
                    }
                }
            }
        }
        cars
    }

    fn get_draw_car(&self, id: CarID, map: &Map) -> Option<DrawCarInput> {
        let p = self.parked_cars.get(&id)?;
        match p.spot {
            ParkingSpot::Onstreet(lane, idx) => {
                let front_dist = self.onstreet_lanes[&lane].dist_along_for_car(idx, &p.vehicle);
                Some(DrawCarInput {
                    id: p.vehicle.id,
                    waiting_for_turn: None,
                    status: CarStatus::Parked,
                    show_parking_intent: false,
                    on: Traversable::Lane(lane),
                    partly_on: Vec::new(),
                    label: None,

                    body: map
                        .get_l(lane)
                        .lane_center_pts
                        .exact_slice(front_dist - p.vehicle.length, front_dist),
                })
            }
            ParkingSpot::Offstreet(_, _) => None,
            ParkingSpot::Lot(pl, idx) => {
                let pl = map.get_pl(pl);
                // Some cars might be in the unrenderable extra_spots.
                let (pt, angle) = pl.spots.get(idx)?;
                let buffer = Distance::meters(0.5);
                Some(DrawCarInput {
                    id: p.vehicle.id,
                    waiting_for_turn: None,
                    status: CarStatus::Parked,
                    show_parking_intent: false,
                    // Just used for z-order
                    on: Traversable::Lane(pl.driving_pos.lane()),
                    partly_on: Vec::new(),
                    label: None,

                    body: PolyLine::must_new(vec![
                        pt.project_away(buffer, *angle),
                        pt.project_away(map_model::PARKING_LOT_SPOT_LENGTH - buffer, *angle),
                    ]),
                })
            }
        }
    }

    fn canonical_pt(&self, id: CarID, map: &Map) -> Option<Pt2D> {
        let p = self.parked_cars.get(&id)?;
        match p.spot {
            ParkingSpot::Onstreet(_, _) => Some(self.get_draw_car(id, map).unwrap().body.last_pt()),
            ParkingSpot::Lot(pl, _) => {
                if let Some(car) = self.get_draw_car(id, map) {
                    Some(car.body.last_pt())
                } else {
                    Some(map.get_pl(pl).polygon.center())
                }
            }
            ParkingSpot::Offstreet(b, _) => Some(map.get_b(b).label_center),
        }
    }

    fn get_all_draw_cars(&self, map: &Map) -> Vec<DrawCarInput> {
        self.parked_cars
            .keys()
            .filter_map(|id| self.get_draw_car(*id, map))
            .collect()
    }

    fn is_free(&self, spot: ParkingSpot) -> bool {
        !self.occupants.contains_key(&spot) && !self.reserved_spots.contains(&spot)
    }

    fn get_car_at_spot(&self, spot: ParkingSpot) -> Option<&ParkedCar> {
        let car = self.occupants.get(&spot)?;
        Some(&self.parked_cars[&car])
    }

    fn get_all_free_spots(
        &self,
        driving_pos: Position,
        vehicle: &Vehicle,
        // Either the building where a seeded car starts or the target of a trip. For filtering
        // private spots.
        target: BuildingID,
        map: &Map,
    ) -> Vec<(ParkingSpot, Position)> {
        let mut candidates = Vec::new();

        for l in self.driving_to_parking_lanes.get(driving_pos.lane()) {
            for spot in self.onstreet_lanes[l].spots() {
                if self.is_free(spot)
                    && driving_pos.dist_along()
                        < self.spot_to_driving_pos(spot, vehicle, map).dist_along()
                {
                    candidates.push(spot);
                }
            }
        }

        for (b, bldg_dist) in self.driving_to_offstreet.get(driving_pos.lane()) {
            if let OffstreetParking::Private(_, _) = map.get_b(*b).parking {
                if target != *b {
                    continue;
                }
            }
            if driving_pos.dist_along() < *bldg_dist {
                for idx in 0..self.num_spots_per_offstreet[b] {
                    let spot = ParkingSpot::Offstreet(*b, idx);
                    if self.is_free(spot) {
                        candidates.push(spot);
                    }
                }
            }
        }

        for pl in self.driving_to_lots.get(driving_pos.lane()) {
            let lot_dist = map.get_pl(*pl).driving_pos.dist_along();
            if driving_pos.dist_along() < lot_dist {
                for idx in 0..self.num_spots_per_lot[&pl] {
                    let spot = ParkingSpot::Lot(*pl, idx);
                    if self.is_free(spot) {
                        candidates.push(spot);
                    }
                }
            }
        }

        candidates
            .into_iter()
            .map(|spot| (spot, self.spot_to_driving_pos(spot, vehicle, map)))
            .collect()
    }

    fn spot_to_driving_pos(&self, spot: ParkingSpot, vehicle: &Vehicle, map: &Map) -> Position {
        match spot {
            ParkingSpot::Onstreet(l, idx) => {
                let lane = &self.onstreet_lanes[&l];
                Position::new(l, lane.dist_along_for_car(idx, vehicle)).equiv_pos_for_long_object(
                    lane.driving_lane,
                    vehicle.length,
                    map,
                )
            }
            ParkingSpot::Offstreet(b, _) => map.get_b(b).driving_connection(map).unwrap().0,
            ParkingSpot::Lot(pl, _) => map.get_pl(pl).driving_pos,
        }
    }

    fn spot_to_sidewalk_pos(&self, spot: ParkingSpot, map: &Map) -> Position {
        match spot {
            ParkingSpot::Onstreet(l, idx) => {
                let lane = &self.onstreet_lanes[&l];
                // Always centered in the entire parking spot
                Position::new(
                    l,
                    lane.spot_dist_along[idx] - (map_model::PARKING_SPOT_LENGTH / 2.0),
                )
                .equiv_pos(lane.sidewalk, map)
            }
            ParkingSpot::Offstreet(b, _) => map.get_b(b).sidewalk_pos,
            ParkingSpot::Lot(pl, _) => map.get_pl(pl).sidewalk_pos,
        }
    }

    fn get_owner_of_car(&self, id: CarID) -> Option<PersonID> {
        self.parked_cars.get(&id).and_then(|p| p.vehicle.owner)
    }
    fn lookup_parked_car(&self, id: CarID) -> Option<&ParkedCar> {
        self.parked_cars.get(&id)
    }

    fn get_all_parking_spots(&self) -> (Vec<ParkingSpot>, Vec<ParkingSpot>) {
        let mut spots = Vec::new();
        for lane in self.onstreet_lanes.values() {
            spots.extend(lane.spots());
        }
        for (b, num_spots) in &self.num_spots_per_offstreet {
            for idx in 0..*num_spots {
                spots.push(ParkingSpot::Offstreet(*b, idx));
            }
        }
        for (pl, num_spots) in &self.num_spots_per_lot {
            for idx in 0..*num_spots {
                spots.push(ParkingSpot::Lot(*pl, idx));
            }
        }

        let mut filled = Vec::new();
        let mut available = Vec::new();
        for spot in spots {
            if self.is_free(spot) {
                available.push(spot);
            } else {
                filled.push(spot);
            }
        }
        (filled, available)
    }

    fn path_to_free_parking_spot(
        &self,
        start: LaneID,
        vehicle: &Vehicle,
        target: BuildingID,
        map: &Map,
    ) -> Option<(Vec<PathStep>, ParkingSpot, Position)> {
        let mut backrefs: HashMap<LaneID, TurnID> = HashMap::new();
        // Don't travel far.
        // This is a max-heap, so negate all distances. Tie breaker is lane ID, arbitrary but
        // deterministic.
        let mut queue: BinaryHeap<(Distance, LaneID)> = BinaryHeap::new();
        queue.push((Distance::ZERO, start));

        while !queue.is_empty() {
            let (dist_so_far, current) = queue.pop().unwrap();
            // If the current lane has a spot open, we wouldn't be asking. This can happen if a spot
            // opens up on the 'start' lane, but behind the car.
            if current != start {
                // Pick the closest to the start of the lane, since that's closest to where we came
                // from
                if let Some((spot, pos)) = self
                    .get_all_free_spots(Position::start(current), vehicle, target, map)
                    .into_iter()
                    .min_by_key(|(_, pos)| pos.dist_along())
                {
                    let mut steps = vec![PathStep::Lane(current)];
                    let mut current = current;
                    loop {
                        if current == start {
                            // Don't include PathStep::Lane(start)
                            steps.pop();
                            steps.reverse();
                            return Some((steps, spot, pos));
                        }
                        let turn = backrefs[&current];
                        steps.push(PathStep::Turn(turn));
                        steps.push(PathStep::Lane(turn.src));
                        current = turn.src;
                    }
                }
            }
            for turn in map.get_turns_for(current, PathConstraints::Car) {
                if !backrefs.contains_key(&turn.id.dst) {
                    let dist_this_step = turn.geom.length() + map.get_l(current).length();
                    backrefs.insert(turn.id.dst, turn.id);
                    // Remember, keep things negative
                    queue.push((dist_so_far - dist_this_step, turn.id.dst));
                }
            }
        }

        None
    }

    fn collect_events(&mut self) -> Vec<Event> {
        std::mem::replace(&mut self.events, Vec::new())
    }

    fn all_parked_car_positions(&self, map: &Map) -> Vec<(Position, PersonID)> {
        self.parked_cars
            .values()
            .map(|p| {
                (
                    self.spot_to_sidewalk_pos(p.spot, map),
                    p.vehicle.owner.unwrap(),
                )
            })
            .collect()
    }

    fn bldg_to_parked_cars(&self, b: BuildingID) -> Vec<CarID> {
        let mut cars = Vec::new();
        for idx in 0..self.num_spots_per_offstreet.get(&b).cloned().unwrap_or(0) {
            let spot = ParkingSpot::Offstreet(b, idx);
            if let Some(car) = self.occupants.get(&spot) {
                cars.push(*car);
            }
        }
        cars
    }
}

#[derive(Serialize, Deserialize, Clone)]
struct ParkingLane {
    parking_lane: LaneID,
    driving_lane: LaneID,
    sidewalk: LaneID,
    // The front of the parking spot (farthest along the lane)
    spot_dist_along: Vec<Distance>,
}

impl ParkingLane {
    fn new(lane: &Lane, map: &Map, timer: &mut Timer) -> Option<ParkingLane> {
        if lane.lane_type != LaneType::Parking {
            return None;
        }

        let driving_lane = if let Some(l) = map.get_parent(lane.id).parking_to_driving(lane.id, map)
        {
            l
        } else {
            // Serious enough to blow up loudly.
            panic!("Parking lane {} has no driving lane!", lane.id);
        };
        if map.get_l(driving_lane).driving_blackhole {
            return None;
        }
        let sidewalk = if let Some(l) =
            map.get_parent(lane.id)
                .find_closest_lane(lane.id, |l| l.is_walkable(), map)
        {
            l
        } else {
            timer.warn(format!("Parking lane {} has no sidewalk!", lane.id));
            return None;
        };

        Some(ParkingLane {
            parking_lane: lane.id,
            driving_lane,
            sidewalk,
            spot_dist_along: (0..lane.number_parking_spots())
                .map(|idx| map_model::PARKING_SPOT_LENGTH * (2.0 + idx as f64))
                .collect(),
        })
    }

    fn dist_along_for_car(&self, spot_idx: usize, vehicle: &Vehicle) -> Distance {
        // Find the offset to center this particular car in the parking spot
        self.spot_dist_along[spot_idx] - (map_model::PARKING_SPOT_LENGTH - vehicle.length) / 2.0
    }

    fn spots(&self) -> Vec<ParkingSpot> {
        let mut spots = Vec::new();
        for idx in 0..self.spot_dist_along.len() {
            spots.push(ParkingSpot::Onstreet(self.parking_lane, idx));
        }
        spots
    }
}

/// This assigns infinite private parking to all buildings and none anywhere else. This effectively
/// disables the simulation of parking entirely, making driving trips just go directly between
/// buildings. Useful for maps without good parking data (which is currently all of them) and
/// experiments where parking contention skews results and just gets in the way.
//
// TODO Reconsider this split implementation. There's lots of copied code. We can maybe just use
// NormalParkingSimState with an 'infinite: bool' and rethinking num_spots_per_offstreet.
#[derive(Serialize, Deserialize, Clone)]
pub struct InfiniteParkingSimState {
    #[serde(
        serialize_with = "serialize_btreemap",
        deserialize_with = "deserialize_btreemap"
    )]
    parked_cars: BTreeMap<CarID, ParkedCar>,
    #[serde(
        serialize_with = "serialize_btreemap",
        deserialize_with = "deserialize_btreemap"
    )]
    occupants: BTreeMap<ParkingSpot, CarID>,
    reserved_spots: BTreeSet<ParkingSpot>,

    // Cache dist_along
    #[serde(
        serialize_with = "serialize_multimap",
        deserialize_with = "deserialize_multimap"
    )]
    driving_to_offstreet: MultiMap<LaneID, (BuildingID, Distance)>,
    // For an entry b1 -> b2, b1 is blackholed, so instead go park at b2 and walk the rest of the
    // way.
    blackholed_building_redirects: BTreeMap<BuildingID, BuildingID>,

    events: Vec<Event>,
}

impl InfiniteParkingSimState {
    fn new(map: &Map) -> InfiniteParkingSimState {
        let mut sim = InfiniteParkingSimState {
            parked_cars: BTreeMap::new(),
            occupants: BTreeMap::new(),
            reserved_spots: BTreeSet::new(),

            driving_to_offstreet: MultiMap::new(),
            blackholed_building_redirects: BTreeMap::new(),

            events: Vec::new(),
        };
        let mut blackholes = Vec::new();
        for b in map.all_buildings() {
            if let Some((pos, _)) = b.driving_connection(map) {
                if !map.get_l(pos.lane()).driving_blackhole {
                    sim.driving_to_offstreet
                        .insert(pos.lane(), (b.id, pos.dist_along()));
                    continue;
                }
            }
            blackholes.push(b.id);
        }

        // For every blackholed building, find a nearby building that isn't blackholed
        for b in blackholes {
            // TODO This is a simple DFS. Could sort by distance.
            let mut queue = vec![map.find_driving_lane_near_building(b)];
            let mut seen = BTreeSet::new();
            loop {
                let current = queue.pop().unwrap();
                if seen.contains(&current) {
                    continue;
                }
                seen.insert(current);
                if let Some((redirect, _)) = sim.driving_to_offstreet.get(current).iter().next() {
                    sim.blackholed_building_redirects.insert(b, *redirect);
                    break;
                }
                for turn in map.get_turns_for(current, PathConstraints::Car) {
                    queue.push(turn.id.dst);
                }
            }
        }

        sim
    }

    fn get_free_bldg_spot(&self, b: BuildingID) -> ParkingSpot {
        if let Some(redirect) = self.blackholed_building_redirects.get(&b) {
            // This won't recurse endlessly; the redirect is not a key in
            // blackholed_building_redirects.
            return self.get_free_bldg_spot(*redirect);
        }

        let mut i = 0;
        loop {
            let spot = ParkingSpot::Offstreet(b, i);
            if self.is_free(spot) {
                return spot;
            }
            i += 1;
        }
    }
}

impl ParkingSim for InfiniteParkingSimState {
    fn handle_live_edits(&mut self, map: &Map, _: &mut Timer) -> Vec<ParkedCar> {
        // Can live edits possibly affect anything?
        let new = InfiniteParkingSimState::new(map);
        self.driving_to_offstreet = new.driving_to_offstreet;
        self.blackholed_building_redirects = new.blackholed_building_redirects;

        Vec::new()
    }

    fn get_free_onstreet_spots(&self, _: LaneID) -> Vec<ParkingSpot> {
        Vec::new()
    }

    fn get_free_offstreet_spots(&self, b: BuildingID) -> Vec<ParkingSpot> {
        // Just returns the next free spot
        vec![self.get_free_bldg_spot(b)]
    }

    fn get_free_lot_spots(&self, _: ParkingLotID) -> Vec<ParkingSpot> {
        Vec::new()
    }

    fn reserve_spot(&mut self, spot: ParkingSpot) {
        assert!(self.is_free(spot));
        self.reserved_spots.insert(spot);
    }

    fn remove_parked_car(&mut self, p: ParkedCar) {
        self.parked_cars
            .remove(&p.vehicle.id)
            .expect("remove_parked_car missing from parked_cars");
        self.occupants
            .remove(&p.spot)
            .expect("remove_parked_car missing from occupants");
        self.events
            .push(Event::CarLeftParkingSpot(p.vehicle.id, p.spot));
    }

    fn add_parked_car(&mut self, p: ParkedCar) {
        self.events
            .push(Event::CarReachedParkingSpot(p.vehicle.id, p.spot));

        assert!(self.reserved_spots.remove(&p.spot));

        assert!(!self.occupants.contains_key(&p.spot));
        self.occupants.insert(p.spot, p.vehicle.id);

        assert!(!self.parked_cars.contains_key(&p.vehicle.id));
        self.parked_cars.insert(p.vehicle.id, p);
    }

    fn get_draw_cars(&self, _: LaneID, _: &Map) -> Vec<DrawCarInput> {
        Vec::new()
    }

    fn get_draw_cars_in_lots(&self, _: LaneID, _: &Map) -> Vec<DrawCarInput> {
        Vec::new()
    }

    fn get_draw_car(&self, _: CarID, _: &Map) -> Option<DrawCarInput> {
        None
    }

    fn canonical_pt(&self, id: CarID, map: &Map) -> Option<Pt2D> {
        let p = self.parked_cars.get(&id)?;
        match p.spot {
            ParkingSpot::Offstreet(b, _) => Some(map.get_b(b).label_center),
            _ => unreachable!(),
        }
    }

    fn get_all_draw_cars(&self, _: &Map) -> Vec<DrawCarInput> {
        Vec::new()
    }

    fn is_free(&self, spot: ParkingSpot) -> bool {
        !self.occupants.contains_key(&spot) && !self.reserved_spots.contains(&spot)
    }

    fn get_car_at_spot(&self, spot: ParkingSpot) -> Option<&ParkedCar> {
        let car = self.occupants.get(&spot)?;
        Some(&self.parked_cars[&car])
    }

    fn get_all_free_spots(
        &self,
        driving_pos: Position,
        vehicle: &Vehicle,
        target: BuildingID,
        map: &Map,
    ) -> Vec<(ParkingSpot, Position)> {
        // The target building may be blackholed, so fallback to a building on one of the
        // penultimate lanes, when the search begins.
        let mut bldg: Option<BuildingID> = None;
        for (b, bldg_dist) in self.driving_to_offstreet.get(driving_pos.lane()) {
            if driving_pos.dist_along() >= *bldg_dist {
                continue;
            }
            if target == *b {
                bldg = Some(target);
                break;
            } else if bldg.is_none() {
                // Backup option
                bldg = Some(*b);
            }
        }
        if let Some(b) = bldg {
            let spot = self.get_free_bldg_spot(b);
            vec![(spot, self.spot_to_driving_pos(spot, vehicle, map))]
        } else {
            Vec::new()
        }
    }

    fn spot_to_driving_pos(&self, spot: ParkingSpot, _: &Vehicle, map: &Map) -> Position {
        match spot {
            ParkingSpot::Offstreet(b, _) => map.get_b(b).driving_connection(map).unwrap().0,
            _ => unreachable!(),
        }
    }

    fn spot_to_sidewalk_pos(&self, spot: ParkingSpot, map: &Map) -> Position {
        match spot {
            ParkingSpot::Offstreet(b, _) => map.get_b(b).sidewalk_pos,
            _ => unreachable!(),
        }
    }

    fn get_owner_of_car(&self, id: CarID) -> Option<PersonID> {
        self.parked_cars.get(&id).and_then(|p| p.vehicle.owner)
    }
    fn lookup_parked_car(&self, id: CarID) -> Option<&ParkedCar> {
        self.parked_cars.get(&id)
    }

    fn get_all_parking_spots(&self) -> (Vec<ParkingSpot>, Vec<ParkingSpot>) {
        unreachable!()
    }

    fn path_to_free_parking_spot(
        &self,
        start: LaneID,
        vehicle: &Vehicle,
        target: BuildingID,
        map: &Map,
    ) -> Option<(Vec<PathStep>, ParkingSpot, Position)> {
        // TODO This impl is copied from NormalParkingSimState. Instead, we already know the
        // redirect... could just path to it.
        let mut backrefs: HashMap<LaneID, TurnID> = HashMap::new();
        // Don't travel far.
        // This is a max-heap, so negate all distances. Tie breaker is lane ID, arbitrary but
        // deterministic.
        let mut queue: BinaryHeap<(Distance, LaneID)> = BinaryHeap::new();
        queue.push((Distance::ZERO, start));

        while !queue.is_empty() {
            let (dist_so_far, current) = queue.pop().unwrap();
            // If the current lane has a spot open, we wouldn't be asking. This can happen if a spot
            // opens up on the 'start' lane, but behind the car.
            if current != start {
                // Pick the closest to the start of the lane, since that's closest to where we came
                // from
                if let Some((spot, pos)) = self
                    .get_all_free_spots(Position::start(current), vehicle, target, map)
                    .into_iter()
                    .min_by_key(|(_, pos)| pos.dist_along())
                {
                    let mut steps = vec![PathStep::Lane(current)];
                    let mut current = current;
                    loop {
                        if current == start {
                            // Don't include PathStep::Lane(start)
                            steps.pop();
                            steps.reverse();
                            return Some((steps, spot, pos));
                        }
                        let turn = backrefs[&current];
                        steps.push(PathStep::Turn(turn));
                        steps.push(PathStep::Lane(turn.src));
                        current = turn.src;
                    }
                }
            }
            for turn in map.get_turns_for(current, PathConstraints::Car) {
                if !backrefs.contains_key(&turn.id.dst) {
                    let dist_this_step = turn.geom.length() + map.get_l(current).length();
                    backrefs.insert(turn.id.dst, turn.id);
                    // Remember, keep things negative
                    queue.push((dist_so_far - dist_this_step, turn.id.dst));
                }
            }
        }

        None
    }

    fn collect_events(&mut self) -> Vec<Event> {
        std::mem::replace(&mut self.events, Vec::new())
    }

    fn all_parked_car_positions(&self, map: &Map) -> Vec<(Position, PersonID)> {
        self.parked_cars
            .values()
            .map(|p| {
                (
                    self.spot_to_sidewalk_pos(p.spot, map),
                    p.vehicle.owner.unwrap(),
                )
            })
            .collect()
    }

    fn bldg_to_parked_cars(&self, b: BuildingID) -> Vec<CarID> {
        // TODO This is a very inefficient impl
        let mut cars = Vec::new();
        for (spot, car) in &self.occupants {
            if let ParkingSpot::Offstreet(bldg, _) = spot {
                if b == *bldg {
                    cars.push(*car);
                }
            }
        }
        cars
    }
}