1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
use std::collections::{BTreeMap, BTreeSet};

use serde::{Deserialize, Serialize};

use geom::{Duration, Time};
use map_model::{LaneID, Map, Path, PathConstraints, PathStep, TurnID};

use crate::mechanics::IntersectionSimState;
use crate::{CarID, SimOptions, VehicleType};

// Note this only indexes into the zones we track here, not all of them in the map.
type ZoneIdx = usize;

/// Dynamically limit driving trips that meet different conditions:
///
/// - trips passing through roads with a per-hour cap
/// - trips passing through roads with agents currently experiencing some delay
///
/// Transform the trips by:
///
/// - cancelling them
/// - delaying them
/// - rerouting them
// TODO I'm not sure a single struct is the right way to manage these combinations.
#[derive(Serialize, Deserialize, Clone)]
pub(crate) struct CapSimState {
    lane_to_zone: BTreeMap<LaneID, ZoneIdx>,
    zones: Vec<Zone>,

    cancel_drivers_delay_threshold: Option<Duration>,
    delay_trips_instead_of_cancelling: Option<Duration>,
}

pub enum CapResult {
    OK(Path),
    Reroute(Path),
    Cancel { reason: String },
    Delay(Duration),
    // TODO Switch modes
}

#[derive(Serialize, Deserialize, Clone)]
struct Zone {
    cap: usize,
    entered_in_last_hour: BTreeSet<CarID>,
    // TODO Maybe want sliding windows or something else
    hour_started: Time,
}

impl CapSimState {
    pub fn new(map: &Map, opts: &SimOptions) -> CapSimState {
        let mut sim = CapSimState {
            lane_to_zone: BTreeMap::new(),
            zones: Vec::new(),
            cancel_drivers_delay_threshold: opts.cancel_drivers_delay_threshold.clone(),
            delay_trips_instead_of_cancelling: opts.delay_trips_instead_of_cancelling.clone(),
        };
        for z in map.all_zones() {
            if let Some(cap) = z.restrictions.cap_vehicles_per_hour {
                let idx = sim.zones.len();
                for r in &z.members {
                    for l in map.get_r(*r).all_lanes() {
                        if PathConstraints::Car.can_use(map.get_l(l), map) {
                            sim.lane_to_zone.insert(l, idx);
                        }
                    }
                }
                sim.zones.push(Zone {
                    cap,
                    entered_in_last_hour: BTreeSet::new(),
                    hour_started: Time::START_OF_DAY,
                });
            }
        }
        sim
    }

    /// Before the driving portion of a trip begins, check that the desired path doesn't exceed any
    /// dynamic limits.
    pub fn maybe_cap_path(
        &mut self,
        path: Path,
        now: Time,
        car: CarID,
        intersections: &IntersectionSimState,
        map: &Map,
    ) -> CapResult {
        if self.cancel_drivers_delay_threshold.is_some() {
            if let Some((turn, delay)) = self.path_crosses_delay(now, &path, intersections, map) {
                // TODO Reroute around current delays?
                if let Some(delay) = self.delay_trips_instead_of_cancelling {
                    return CapResult::Delay(delay);
                } else {
                    return CapResult::Cancel {
                        reason: format!("path crosses delay of {} at {}", delay, turn),
                    };
                }
            }
        }

        if self.trip_under_cap(now, car, &path) {
            return CapResult::OK(path);
        }

        let mut avoid_lanes: BTreeSet<LaneID> = BTreeSet::new();
        for (l, idx) in &self.lane_to_zone {
            let zone = &self.zones[*idx];
            if zone.entered_in_last_hour.len() >= zone.cap
                && !zone.entered_in_last_hour.contains(&car)
            {
                avoid_lanes.insert(*l);
            }
        }
        match map.pathfind_avoiding_lanes(path.get_req().clone(), avoid_lanes) {
            Some(path) => CapResult::Reroute(path),
            None => {
                if let Some(delay) = self.delay_trips_instead_of_cancelling {
                    CapResult::Delay(delay)
                } else {
                    CapResult::Cancel {
                        reason: format!("no path avoiding caps: {}", path.get_req()),
                    }
                }
            }
        }
    }
}

// Specific to the cap-per-road mechanism
impl CapSimState {
    pub fn get_cap_counter(&self, l: LaneID) -> usize {
        if let Some(idx) = self.lane_to_zone.get(&l) {
            self.zones[*idx].entered_in_last_hour.len()
        } else {
            0
        }
    }

    fn trip_under_cap(&mut self, now: Time, car: CarID, path: &Path) -> bool {
        if car.1 != VehicleType::Car || self.lane_to_zone.is_empty() {
            return true;
        }
        for step in path.get_steps() {
            if let PathStep::Lane(l) = step {
                if let Some(idx) = self.lane_to_zone.get(l) {
                    let zone = &mut self.zones[*idx];

                    if now - zone.hour_started >= Duration::hours(1) {
                        zone.hour_started = Time::START_OF_DAY + Duration::hours(now.get_parts().0);
                        zone.entered_in_last_hour.clear();
                    }

                    if zone.entered_in_last_hour.len() >= zone.cap
                        && !zone.entered_in_last_hour.contains(&car)
                    {
                        return false;
                    }
                    zone.entered_in_last_hour.insert(car);
                }
            }
        }
        true
    }
}

// Specific to the don't-exceed-delay mechanism
impl CapSimState {
    fn path_crosses_delay(
        &self,
        now: Time,
        path: &Path,
        intersections: &IntersectionSimState,
        map: &Map,
    ) -> Option<(TurnID, Duration)> {
        let threshold = self.cancel_drivers_delay_threshold.unwrap();

        for step in path.get_steps() {
            if let PathStep::Lane(l) = step {
                let lane = map.get_l(*l);
                for (agent, turn, start) in intersections.get_waiting_agents(lane.dst_i) {
                    if now - start < threshold {
                        continue;
                    }
                    if agent.to_vehicle_type() != Some(VehicleType::Car) {
                        continue;
                    }
                    if map.get_l(turn.src).parent != lane.parent {
                        continue;
                    }
                    // TODO Should we make sure the delayed agent is also trying to go the same
                    // direction? For example, people turning left somewhere might be delayed, while
                    // people going straight are fine. But then the presence of a turn lane matters.
                    return Some((turn, now - start));
                }
            }
        }
        None
    }
}