1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
use std::fs::File;
use rand::{Rng, SeedableRng};
use rand_xorshift::XorShiftRng;
use serde::Deserialize;
use abstutil::{prettyprint_usize, Timer};
use geom::{Polygon, Ring};
use kml::ExtraShapes;
use map_model::raw::RawMap;
use map_model::BuildingType;
use crate::configuration::ImporterConfiguration;
use crate::utils::{download, download_kml};
pub fn import_extra_data(map: &RawMap, config: &ImporterConfiguration, timer: &mut Timer) {
download_kml(
"input/berlin/planning_areas.bin",
"https://tsb-opendata.s3.eu-central-1.amazonaws.com/lor_planungsgraeume/lor_planungsraeume.kml",
&map.gps_bounds,
false,
timer
);
download(
config,
"input/berlin/EWR201812E_Matrix.csv",
"https://www.statistik-berlin-brandenburg.de/opendata/EWR201812E_Matrix.csv",
);
correlate_population(
"data/input/berlin/planning_areas.bin",
"data/input/berlin/EWR201812E_Matrix.csv",
timer,
);
}
fn correlate_population(kml_path: &str, csv_path: &str, timer: &mut Timer) {
let mut shapes = abstutil::read_binary::<ExtraShapes>(kml_path.to_string(), timer);
for rec in csv::ReaderBuilder::new()
.delimiter(b';')
.from_reader(File::open(csv_path).unwrap())
.deserialize()
{
let rec: Record = rec.unwrap();
for shape in &mut shapes.shapes {
if shape.attributes.get("spatial_name") == Some(&rec.raumid) {
shape
.attributes
.insert("num_residents".to_string(), rec.e_e);
break;
}
}
}
abstutil::write_binary(kml_path.to_string(), &shapes);
}
#[derive(Debug, Deserialize)]
struct Record {
#[serde(rename = "RAUMID")]
raumid: String,
#[serde(rename = "E_E")]
e_e: String,
}
pub fn distribute_residents(map: &mut map_model::Map, timer: &mut Timer) {
for shape in abstutil::read_binary::<ExtraShapes>(
"data/input/berlin/planning_areas.bin".to_string(),
timer,
)
.shapes
{
let pts = map.get_gps_bounds().convert(&shape.points);
if pts
.iter()
.all(|pt| !map.get_boundary_polygon().contains_pt(*pt))
{
continue;
}
let region = Ring::must_new(pts).to_polygon();
let bldgs: Vec<map_model::BuildingID> = map
.all_buildings()
.into_iter()
.filter(|b| region.contains_pt(b.label_center) && b.bldg_type.has_residents())
.map(|b| b.id)
.collect();
let orig_num_residents = shape.attributes["num_residents"].parse::<f64>().unwrap();
let pct_overlap = Polygon::union_all(region.intersection(map.get_boundary_polygon()))
.area()
/ region.area();
let num_residents = (pct_overlap * orig_num_residents) as usize;
timer.note(format!(
"Distributing {} residents in {} to {} buildings. {}% of this area overlapped with \
the map, scaled residents accordingly.",
prettyprint_usize(num_residents),
shape.attributes["spatial_alias"],
prettyprint_usize(bldgs.len()),
(pct_overlap * 100.0) as usize
));
let mut rng =
XorShiftRng::seed_from_u64(shape.attributes["spatial_name"].parse::<u64>().unwrap());
let mut rand_nums: Vec<f64> = (0..bldgs.len()).map(|_| rng.gen_range(0.0, 1.0)).collect();
let sum: f64 = rand_nums.iter().sum();
for b in bldgs {
let n = (rand_nums.pop().unwrap() / sum * (num_residents as f64)) as usize;
let bldg_type = match map.get_b(b).bldg_type {
BuildingType::Residential {
num_housing_units, ..
} => BuildingType::Residential {
num_housing_units,
num_residents: n,
},
BuildingType::ResidentialCommercial(_, worker_cap) => {
BuildingType::ResidentialCommercial(n, worker_cap)
}
_ => unreachable!(),
};
map.hack_override_bldg_type(b, bldg_type);
}
}
map.save();
}