1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// TODO Possibly these should be methods on Map.

use std::collections::{HashMap, HashSet};

use petgraph::graphmap::DiGraphMap;

use geom::Duration;

pub use self::walking::{all_walking_costs_from, WalkingOptions};
use crate::pathfind::{build_graph_for_vehicles, zone_cost};
pub use crate::pathfind::{vehicle_cost, WalkingNode};
use crate::{BuildingID, LaneID, Map, PathConstraints, PathRequest, RoadID};

mod walking;

/// Calculate the srongy connected components (SCC) of the part of the map accessible by constraints
/// (ie, the graph of sidewalks or driving+bike lanes). The largest component is the "main" graph;
/// the rest is disconnected. Returns (lanes in the largest "main" component, all other disconnected
/// lanes)
pub fn find_scc(map: &Map, constraints: PathConstraints) -> (HashSet<LaneID>, HashSet<LaneID>) {
    let mut graph = DiGraphMap::new();
    for turn in map.all_turns().values() {
        if constraints.can_use(map.get_l(turn.id.src), map)
            && constraints.can_use(map.get_l(turn.id.dst), map)
        {
            graph.add_edge(turn.id.src, turn.id.dst, 1);
        }
    }
    let components = petgraph::algo::kosaraju_scc(&graph);
    if components.is_empty() {
        return (HashSet::new(), HashSet::new());
    }
    let largest_group: HashSet<LaneID> = components
        .into_iter()
        .max_by_key(|c| c.len())
        .unwrap()
        .into_iter()
        .collect();
    let disconnected = map
        .all_lanes()
        .iter()
        .filter_map(|l| {
            if constraints.can_use(l, map) && !largest_group.contains(&l.id) {
                Some(l.id)
            } else {
                None
            }
        })
        .collect();
    (largest_group, disconnected)
}

/// Starting from one building, calculate the cost to all others. If a destination isn't reachable,
/// it won't be included in the results. Ignore results greater than the time_limit away.
pub fn all_vehicle_costs_from(
    map: &Map,
    start: BuildingID,
    time_limit: Duration,
    constraints: PathConstraints,
) -> HashMap<BuildingID, Duration> {
    assert!(constraints != PathConstraints::Pedestrian);
    let mut results = HashMap::new();

    // TODO We have a graph of LaneIDs, but mapping a building to one isn't straightforward. In
    // the common case it'll be fine, but some buildings are isolated from the graph by some
    // sidewalks.
    let mut bldg_to_lane = HashMap::new();
    for b in map.all_buildings() {
        if constraints == PathConstraints::Car {
            if let Some((pos, _)) = b.driving_connection(map) {
                bldg_to_lane.insert(b.id, pos.lane());
            }
        } else if constraints == PathConstraints::Bike {
            if let Some((pos, _)) = b.biking_connection(map) {
                bldg_to_lane.insert(b.id, pos.lane());
            }
        }
    }

    if let Some(start_lane) = bldg_to_lane.get(&start) {
        let graph = build_graph_for_vehicles(map, constraints);
        let cost_per_lane = petgraph::algo::dijkstra(&graph, *start_lane, None, |(_, _, turn)| {
            vehicle_cost(
                map.get_l(turn.src),
                map.get_t(*turn),
                constraints,
                map.routing_params(),
                map,
            )
        });
        for (b, lane) in bldg_to_lane {
            if let Some(duration) = cost_per_lane.get(&lane).cloned() {
                if duration <= time_limit {
                    results.insert(b, duration);
                }
            }
        }
    }

    results
}

// TODO Refactor with all_vehicle_costs_from
pub fn debug_vehicle_costs(
    req: PathRequest,
    map: &Map,
) -> Option<(Duration, HashMap<RoadID, Duration>)> {
    // TODO Support this
    if req.constraints == PathConstraints::Pedestrian {
        return None;
    }
    let graph = build_graph_for_vehicles(map, req.constraints);

    let (cost, _) = petgraph::algo::astar(
        &graph,
        req.start.lane(),
        |l| l == req.end.lane(),
        |(_, _, t)| {
            let turn = map.get_t(*t);
            vehicle_cost(
                map.get_l(turn.id.src),
                turn,
                req.constraints,
                map.routing_params(),
                map,
            ) + zone_cost(turn, req.constraints, map)
        },
        |_| Duration::ZERO,
    )?;

    let lane_costs = petgraph::algo::dijkstra(&graph, req.start.lane(), None, |(_, _, t)| {
        let turn = map.get_t(*t);
        vehicle_cost(
            map.get_l(turn.id.src),
            turn,
            req.constraints,
            map.routing_params(),
            map,
        ) + zone_cost(turn, req.constraints, map)
    });
    // Express the costs per road for an easier debug experince. Take the LOWEST cost per road,
    // since we don't want noise from considering the opposite direction.
    let mut road_costs = HashMap::new();
    for (l, cost) in lane_costs {
        let road_cost = road_costs.entry(map.get_l(l).parent).or_insert(cost);
        *road_cost = (*road_cost).min(cost);
    }

    Some((cost, road_costs))
}