1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
use std::collections::{HashSet, VecDeque};
use geom::{Bounds, Distance, Polygon, Pt2D};
use map_gui::tools::Grid;
use map_model::Map;
use widgetry::{Color, GeomBatch};
use super::Neighborhood;
lazy_static::lazy_static! {
static ref COLORS: [Color; 6] = [
Color::BLUE,
Color::YELLOW,
Color::hex("#3CAEA3"),
Color::PURPLE,
Color::PINK,
Color::ORANGE,
];
}
const CAR_FREE_COLOR: Color = Color::GREEN;
const DISCONNECTED_COLOR: Color = Color::RED;
const RESOLUTION_M: f64 = 10.0;
pub struct RenderCells {
grid: Grid<Option<usize>>,
pub colors: Vec<Color>,
bounds: Bounds,
boundary_marker: usize,
}
impl RenderCells {
pub fn new(map: &Map, neighborhood: &Neighborhood) -> RenderCells {
let boundary_polygon = neighborhood
.orig_perimeter
.clone()
.to_block(map)
.unwrap()
.polygon;
let bounds = boundary_polygon.get_bounds();
let mut grid: Grid<Option<usize>> = Grid::new(
(bounds.width() / RESOLUTION_M).ceil() as usize,
(bounds.height() / RESOLUTION_M).ceil() as usize,
None,
);
for (cell_idx, cell) in neighborhood.cells.iter().enumerate() {
for (r, interval) in &cell.roads {
let road = map.get_r(*r);
for (pt, _) in road
.center_pts
.exact_slice(interval.start, interval.end)
.step_along(Distance::meters(RESOLUTION_M / 2.0), Distance::ZERO)
{
let grid_idx = grid.idx(
((pt.x() - bounds.min_x) / RESOLUTION_M) as usize,
((pt.y() - bounds.min_y) / RESOLUTION_M) as usize,
);
grid.data[grid_idx] = Some(cell_idx);
}
}
}
let boundary_marker = neighborhood.cells.len();
for (pt, _) in geom::PolyLine::unchecked_new(boundary_polygon.into_ring().into_points())
.step_along(Distance::meters(RESOLUTION_M / 2.0), Distance::ZERO)
{
let grid_idx = grid.idx(
((pt.x() - bounds.min_x) / RESOLUTION_M) as usize,
((pt.y() - bounds.min_y) / RESOLUTION_M) as usize,
);
grid.data[grid_idx] = Some(boundary_marker);
}
let adjacencies = diffusion(&mut grid, boundary_marker);
let mut cell_colors = color_cells(neighborhood.cells.len(), adjacencies);
for (idx, cell) in neighborhood.cells.iter().enumerate() {
if cell.car_free {
cell_colors[idx] = CAR_FREE_COLOR;
} else if cell.is_disconnected() {
cell_colors[idx] = DISCONNECTED_COLOR;
}
}
RenderCells {
grid,
colors: cell_colors,
bounds,
boundary_marker,
}
}
pub fn draw_grid(&self) -> GeomBatch {
let mut batch = GeomBatch::new();
for (idx, value) in self.grid.data.iter().enumerate() {
if let Some(cell_idx) = value {
if *cell_idx == self.boundary_marker {
continue;
}
let (x, y) = self.grid.xy(idx);
let tile_center = Pt2D::new(
self.bounds.min_x + RESOLUTION_M * (x as f64 + 0.5),
self.bounds.min_y + RESOLUTION_M * (y as f64 + 0.5),
);
batch.push(
self.colors[*cell_idx].alpha(0.5),
Polygon::rectangle_centered(
tile_center,
Distance::meters(RESOLUTION_M),
Distance::meters(RESOLUTION_M),
),
);
}
}
batch
}
}
fn diffusion(grid: &mut Grid<Option<usize>>, boundary_marker: usize) -> HashSet<(usize, usize)> {
let mut queue: VecDeque<usize> = VecDeque::new();
for (idx, value) in grid.data.iter().enumerate() {
if let Some(x) = value {
if *x != boundary_marker {
queue.push_back(idx);
}
}
}
let mut adjacencies = HashSet::new();
while !queue.is_empty() {
let current_idx = queue.pop_front().unwrap();
let current_color = grid.data[current_idx].unwrap();
let (current_x, current_y) = grid.xy(current_idx);
for (next_x, next_y) in grid.orthogonal_neighbors(current_x, current_y) {
let next_idx = grid.idx(next_x, next_y);
if let Some(prev_color) = grid.data[next_idx] {
if current_color != prev_color
&& current_color != boundary_marker
&& prev_color != boundary_marker
{
adjacencies.insert((current_color, prev_color));
adjacencies.insert((prev_color, current_color));
}
} else {
grid.data[next_idx] = Some(current_color);
queue.push_back(next_idx);
}
}
}
adjacencies
}
fn color_cells(num_cells: usize, adjacencies: HashSet<(usize, usize)>) -> Vec<Color> {
let mut assigned_colors = Vec::new();
for this_idx in 0..num_cells {
let mut available_colors: Vec<bool> = std::iter::repeat(true).take(COLORS.len()).collect();
for other_idx in 0..num_cells {
if adjacencies.contains(&(this_idx, other_idx)) {
if other_idx < this_idx {
available_colors[assigned_colors[other_idx]] = false;
}
}
}
if let Some(color) = available_colors.iter().position(|x| *x) {
assigned_colors.push(color);
} else {
warn!("color_cells ran out of colors");
assigned_colors.push(0);
}
}
assigned_colors.into_iter().map(|idx| COLORS[idx]).collect()
}