1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
use std::collections::HashSet;

use aabb_quadtree::QuadTree;

use abstio::{CityName, MapName};
use abstutil::Timer;
use geom::{Polygon, Ring};
use kml::ExtraShapes;
use map_model::{BuildingID, BuildingType, Map};
use sim::Scenario;

use crate::configuration::ImporterConfiguration;
use crate::utils::{download, download_kml};

pub async fn input(config: &ImporterConfiguration, timer: &mut Timer<'_>) {
    let city = CityName::seattle();

    // Soundcast data was originally retrieved from staff at PSRC via a download link that didn't
    // last long. From that original 2014 .zip (possibly still available from
    // https://github.com/psrc/soundcast/releases), two files were extracted --
    // parcels_urbansim.txt and trips_2014.csv. Those are now stored in S3. It's a bit weird for
    // the importer pipeline to depend on something in data/input in S3, but this should let
    // anybody run the full pipeline.
    download(
        config,
        city.input_path("parcels_urbansim.txt"),
        "http://abstreet.s3-website.us-east-2.amazonaws.com/dev/data/input/us/seattle/parcels_urbansim.txt.gz",
    )
    .await;
    download(
        config,
        city.input_path("trips_2014.csv"),
        "http://abstreet.s3-website.us-east-2.amazonaws.com/dev/data/input/us/seattle/trips_2014.csv.gz",
    )
    .await;

    let bounds = geom::GPSBounds::from(
        geom::LonLat::read_osmosis_polygon("importer/config/us/seattle/huge_seattle.poly").unwrap(),
    );
    // From http://data-seattlecitygis.opendata.arcgis.com/datasets/blockface
    download_kml(
        city.input_path("blockface.bin"),
        "https://opendata.arcgis.com/datasets/a1458ad1abca41869b81f7c0db0cd777_0.kml",
        &bounds,
        true,
        timer,
    )
    .await;
    // From https://data-seattlecitygis.opendata.arcgis.com/datasets/public-garages-or-parking-lots
    download_kml(
        city.input_path("offstreet_parking.bin"),
        "http://data-seattlecitygis.opendata.arcgis.com/datasets/8e52dfde6d5d45948f7a90654c8d50cd_0.kml",
        &bounds,
        true,
        timer
    ).await;

    // From
    // https://data-seattlecitygis.opendata.arcgis.com/datasets/5b5c745e0f1f48e7a53acec63a0022ab_0
    download(
        config,
        city.input_path("collisions.kml"),
        "https://opendata.arcgis.com/datasets/5b5c745e0f1f48e7a53acec63a0022ab_0.kml",
    )
    .await;

    // This is a little expensive, so delete data/input/us/seattle/collisions.bin to regenerate
    // this.
    if !abstio::file_exists(city.input_path("collisions.bin")) {
        let shapes = kml::load(city.input_path("collisions.kml"), &bounds, true, timer).unwrap();
        let collisions = collisions::import_seattle(
            shapes,
            "https://data-seattlecitygis.opendata.arcgis.com/datasets/5b5c745e0f1f48e7a53acec63a0022ab_0");
        abstio::write_binary(city.input_path("collisions.bin"), &collisions);
    }

    // From https://data-seattlecitygis.opendata.arcgis.com/datasets/parcels-1
    download_kml(
        city.input_path("zoning_parcels.bin"),
        "https://opendata.arcgis.com/datasets/42863f1debdc47488a1c2b9edd38053e_2.kml",
        &bounds,
        true,
        timer,
    )
    .await;

    // From
    // https://data-seattlecitygis.opendata.arcgis.com/datasets/current-land-use-zoning-detail
    download_kml(
        city.input_path("land_use.bin"),
        "https://opendata.arcgis.com/datasets/dd29065b5d01420e9686570c2b77502b_0.kml",
        &bounds,
        false,
        timer,
    )
    .await;
}

/// Download and pre-process data needed to generate Seattle scenarios.
pub async fn ensure_popdat_exists(
    timer: &mut Timer<'_>,
    config: &ImporterConfiguration,
    built_raw_huge_seattle: &mut bool,
    built_map_huge_seattle: &mut bool,
) -> (crate::soundcast::PopDat, map_model::Map) {
    let huge_name = MapName::seattle("huge_seattle");

    if abstio::file_exists(abstio::path_popdat()) {
        println!("- {} exists, not regenerating it", abstio::path_popdat());
        return (
            abstio::read_binary(abstio::path_popdat(), timer),
            map_model::Map::load_synchronously(huge_name.path(), timer),
        );
    }

    if !abstio::file_exists(abstio::path_raw_map(&huge_name)) {
        crate::utils::osm_to_raw(MapName::seattle("huge_seattle"), timer, config).await;
        *built_raw_huge_seattle = true;
    }
    let huge_map = if abstio::file_exists(huge_name.path()) {
        map_model::Map::load_synchronously(huge_name.path(), timer)
    } else {
        *built_map_huge_seattle = true;
        crate::utils::raw_to_map(&huge_name, map_model::RawToMapOptions::default(), timer)
    };

    (crate::soundcast::import_data(&huge_map, timer), huge_map)
}

pub fn adjust_private_parking(map: &mut Map, scenario: &Scenario) {
    for (b, count) in scenario.count_parked_cars_per_bldg().consume() {
        map.hack_override_offstreet_spots_individ(b, count);
    }
    map.save();
}

/// Match OSM buildings to parcels, scraping the number of housing units.
// TODO It's expensive to load the huge zoning_parcels.bin file for every map.
pub fn match_parcels_to_buildings(map: &mut Map, shapes: &ExtraShapes, timer: &mut Timer) {
    let mut parcels_with_housing: Vec<(Polygon, usize)> = Vec::new();
    // TODO We should refactor something like FindClosest, but for polygon containment
    // The quadtree's ID is just an index into parcels_with_housing.
    let mut quadtree: QuadTree<usize> = QuadTree::default(map.get_bounds().as_bbox());
    timer.start_iter("index all parcels", shapes.shapes.len());
    for shape in &shapes.shapes {
        timer.next();
        if let Some(units) = shape
            .attributes
            .get("EXIST_UNITS")
            .and_then(|x| x.parse::<usize>().ok())
        {
            if let Some(ring) = map
                .get_gps_bounds()
                .try_convert(&shape.points)
                .and_then(|pts| Ring::new(pts).ok())
            {
                let polygon = ring.into_polygon();
                quadtree
                    .insert_with_box(parcels_with_housing.len(), polygon.get_bounds().as_bbox());
                parcels_with_housing.push((polygon, units));
            }
        }
    }

    let mut used_parcels: HashSet<usize> = HashSet::new();
    let mut units_per_bldg: Vec<(BuildingID, usize)> = Vec::new();
    timer.start_iter("match buildings to parcels", map.all_buildings().len());
    for b in map.all_buildings() {
        timer.next();
        // If multiple parcels contain a building's center, just pick one arbitrarily
        for (idx, _, _) in quadtree.query(b.polygon.get_bounds().as_bbox()) {
            let idx = *idx;
            if used_parcels.contains(&idx)
                || !parcels_with_housing[idx].0.contains_pt(b.label_center)
            {
                continue;
            }
            used_parcels.insert(idx);
            units_per_bldg.push((b.id, parcels_with_housing[idx].1));
        }
    }

    for (b, num_housing_units) in units_per_bldg {
        let bldg_type = match map.get_b(b).bldg_type.clone() {
            BuildingType::Residential { num_residents, .. } => BuildingType::Residential {
                num_housing_units,
                num_residents,
            },
            x => x,
        };
        map.hack_override_bldg_type(b, bldg_type);
    }

    map.save();
}