1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
//! Pathfinding for pedestrians using contraction hierarchies, as well as figuring out if somebody
//! should use public transit.

use std::cell::RefCell;
use std::collections::HashSet;

use fast_paths::{deserialize_32, serialize_32, FastGraph, InputGraph, PathCalculator};
use serde::{Deserialize, Serialize};
use thread_local::ThreadLocal;

use geom::{Distance, Duration};

use crate::pathfind::ch::round;
use crate::pathfind::dijkstra;
use crate::pathfind::node_map::{deserialize_nodemap, NodeMap};
use crate::pathfind::vehicles::VehiclePathfinder;
use crate::pathfind::zone_cost;
use crate::{
    BusRoute, BusRouteID, BusStopID, DirectedRoadID, IntersectionID, Map, MovementID,
    PathConstraints, PathRequest, PathStepV2, PathV2, Position, Traversable,
};

#[derive(Serialize, Deserialize)]
pub struct SidewalkPathfinder {
    #[serde(serialize_with = "serialize_32", deserialize_with = "deserialize_32")]
    graph: FastGraph,
    #[serde(deserialize_with = "deserialize_nodemap")]
    nodes: NodeMap<WalkingNode>,
    use_transit: bool,

    #[serde(skip_serializing, skip_deserializing)]
    path_calc: ThreadLocal<RefCell<PathCalculator>>,
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash, Serialize, Deserialize)]
pub enum WalkingNode {
    /// false is src_i, true is dst_i
    SidewalkEndpoint(DirectedRoadID, bool),
    // TODO Lots of complexity below could be avoided by explicitly sticking BusRouteID here too.
    // Worth it?
    RideBus(BusStopID),
    LeaveMap(IntersectionID),
}

impl WalkingNode {
    pub fn closest(pos: Position, map: &Map) -> WalkingNode {
        let lane = map.get_l(pos.lane());
        let dst_i = lane.length() - pos.dist_along() <= pos.dist_along();
        WalkingNode::SidewalkEndpoint(lane.get_directed_parent(), dst_i)
    }

    fn end_transit(pos: Position, map: &Map) -> WalkingNode {
        let l = map.get_l(pos.lane());
        if map.get_i(l.src_i).is_outgoing_border() {
            if pos.dist_along() == Distance::ZERO {
                return WalkingNode::LeaveMap(l.src_i);
            }
        }
        if map.get_i(l.dst_i).is_outgoing_border() {
            if pos.dist_along() == l.length() {
                return WalkingNode::LeaveMap(l.dst_i);
            }
        }
        WalkingNode::closest(pos, map)
    }
}

impl SidewalkPathfinder {
    pub fn new(map: &Map, use_transit: bool, bus_graph: &VehiclePathfinder) -> SidewalkPathfinder {
        let mut nodes = NodeMap::new();
        // We're assuming sidewalks aren't editable, so what exists initially will always be true.
        for l in map.all_lanes().values() {
            if l.is_walkable() {
                // We're also assuming there's only one walkable lane per side of the road.
                nodes.get_or_insert(WalkingNode::SidewalkEndpoint(l.get_directed_parent(), true));
                nodes.get_or_insert(WalkingNode::SidewalkEndpoint(
                    l.get_directed_parent(),
                    false,
                ));
            }
        }
        if use_transit {
            // Add a node for each bus stop.
            for bs in map.all_bus_stops().keys() {
                nodes.get_or_insert(WalkingNode::RideBus(*bs));
            }
            for i in map.all_outgoing_borders() {
                // We could filter for those with sidewalks, but eh
                nodes.get_or_insert(WalkingNode::LeaveMap(i.id));
            }
        }

        let graph = fast_paths::prepare(&make_input_graph(map, &nodes, use_transit, bus_graph));
        SidewalkPathfinder {
            graph,
            nodes,
            use_transit,
            path_calc: ThreadLocal::new(),
        }
    }

    pub fn apply_edits(&mut self, map: &Map, bus_graph: &VehiclePathfinder) {
        // The NodeMap is all sidewalks, bus stops, and borders -- it won't change. So we can also
        // reuse the node ordering.
        let input_graph = make_input_graph(map, &self.nodes, self.use_transit, bus_graph);
        let node_ordering = self.graph.get_node_ordering();
        self.graph = fast_paths::prepare_with_order(&input_graph, &node_ordering).unwrap();
    }

    pub fn pathfind(&self, req: PathRequest, map: &Map) -> Option<PathV2> {
        if req.start.lane() == req.end.lane() {
            return Some(one_step_walking_path(req, map));
        }

        let mut calc = self
            .path_calc
            .get_or(|| RefCell::new(fast_paths::create_calculator(&self.graph)))
            .borrow_mut();
        let raw_path = calc.calc_path(
            &self.graph,
            self.nodes.get(WalkingNode::closest(req.start, map)),
            self.nodes.get(WalkingNode::closest(req.end, map)),
        )?;
        let nodes = self.nodes.translate(&raw_path);
        let steps = walking_path_to_steps(nodes, map);
        let cost = Duration::seconds(raw_path.get_weight() as f64);
        Some(PathV2::new(steps, req, cost, Vec::new()))
    }

    /// Attempt the pathfinding and see if we should ride a bus. If so, says (stop1, optional stop
    /// 2, route). If there's no stop 2, then ride the bus off the border.
    pub fn should_use_transit(
        &self,
        map: &Map,
        start: Position,
        end: Position,
    ) -> Option<(BusStopID, Option<BusStopID>, BusRouteID)> {
        let raw_path = fast_paths::calc_path(
            &self.graph,
            self.nodes.get(WalkingNode::closest(start, map)),
            self.nodes.get(WalkingNode::end_transit(end, map)),
        )?;

        let nodes = self.nodes.translate(&raw_path);
        if false {
            println!("should_use_transit from {} to {}?", start, end);
            for n in &nodes {
                println!("- {:?}", n);
            }
        }

        let mut first_stop = None;
        let mut last_stop = None;
        let mut possible_routes: Vec<&BusRoute> = Vec::new();
        for n in &nodes {
            match n {
                WalkingNode::RideBus(stop2) => {
                    if first_stop.is_none() {
                        first_stop = Some(*stop2);
                        possible_routes = map.get_routes_serving_stop(*stop2);
                        assert!(!possible_routes.is_empty());
                    } else {
                        // Keep riding the same route?
                        // We need to do this check, because some transfers might be instantaneous
                        // at the same stop and involve no walking.
                        // Also need to make sure the stops are in the proper order. We might have
                        // a transfer, then try to hop on the first route again, but starting from
                        // a different point.
                        let stop1 = first_stop.unwrap();
                        let mut filtered = possible_routes.clone();
                        filtered.retain(|r| {
                            let idx1 = r.stops.iter().position(|s| *s == stop1).unwrap();
                            let idx2 = r.stops.iter().position(|s| s == stop2);
                            idx2.map(|idx2| idx1 < idx2).unwrap_or(false)
                        });
                        if filtered.is_empty() {
                            // Aha, a transfer!
                            return Some((
                                first_stop.unwrap(),
                                // TODO I thought this should be impossible, but huge_seattle hits
                                // it. Workaround for now by just walking.
                                Some(last_stop?),
                                possible_routes[0].id,
                            ));
                        }
                        last_stop = Some(*stop2);
                        possible_routes = filtered;
                    }
                }
                WalkingNode::LeaveMap(i) => {
                    // Make sure the route actually leaves via the correct border!
                    if let Some(r) = possible_routes.iter().find(|r| {
                        r.end_border
                            .map(|l| map.get_l(l).dst_i == *i)
                            .unwrap_or(false)
                    }) {
                        return Some((first_stop.unwrap(), None, r.id));
                    }
                    // We can get close to the border, but should hop off at some stop.
                    return Some((
                        first_stop.unwrap(),
                        Some(last_stop.expect("impossible transit transfer")),
                        possible_routes[0].id,
                    ));
                }
                WalkingNode::SidewalkEndpoint(_, _) => {
                    if let Some(stop1) = first_stop {
                        return Some((
                            stop1,
                            Some(last_stop.expect("impossible transit transfer")),
                            possible_routes[0].id,
                        ));
                    }
                }
            }
        }
        None
    }
}

fn make_input_graph(
    map: &Map,
    nodes: &NodeMap<WalkingNode>,
    use_transit: bool,
    bus_graph: &VehiclePathfinder,
) -> InputGraph {
    let max_speed = Some(crate::MAX_WALKING_SPEED);
    let mut input_graph = InputGraph::new();

    for l in map.all_lanes().values() {
        if l.is_walkable() {
            let mut cost = l.length()
                / Traversable::Lane(l.id).max_speed_along(
                    max_speed,
                    PathConstraints::Pedestrian,
                    map,
                );
            // TODO Tune this penalty, along with many others.
            if l.is_shoulder() {
                cost = 2.0 * cost;
            }
            let n1 = nodes.get(WalkingNode::SidewalkEndpoint(l.get_directed_parent(), true));
            let n2 = nodes.get(WalkingNode::SidewalkEndpoint(
                l.get_directed_parent(),
                false,
            ));
            input_graph.add_edge(n1, n2, round(cost));
            input_graph.add_edge(n2, n1, round(cost));
        }
    }

    for t in map.all_turns().values() {
        if t.between_sidewalks() {
            let src = map.get_l(t.id.src);
            let dst = map.get_l(t.id.dst);
            let from =
                WalkingNode::SidewalkEndpoint(src.get_directed_parent(), src.dst_i == t.id.parent);
            let to =
                WalkingNode::SidewalkEndpoint(dst.get_directed_parent(), dst.dst_i == t.id.parent);
            let cost = t.geom.length()
                / Traversable::Turn(t.id).max_speed_along(
                    max_speed,
                    PathConstraints::Pedestrian,
                    map,
                );
            input_graph.add_edge(
                nodes.get(from),
                nodes.get(to),
                round(cost + zone_cost(t.id.to_movement(map), PathConstraints::Pedestrian, map)),
            );
        }
    }

    if use_transit {
        transit_input_graph(&mut input_graph, map, nodes, bus_graph);
    }

    input_graph.freeze();
    input_graph
}

fn transit_input_graph(
    input_graph: &mut InputGraph,
    map: &Map,
    nodes: &NodeMap<WalkingNode>,
    bus_graph: &VehiclePathfinder,
) {
    let max_speed = Some(crate::MAX_WALKING_SPEED);
    // Connect bus stops with both sidewalk endpoints, using the appropriate distance.
    for stop in map.all_bus_stops().values() {
        let ride_bus = nodes.get(WalkingNode::RideBus(stop.id));
        let lane = map.get_l(stop.sidewalk_pos.lane());
        for endpt in &[true, false] {
            let dist = if *endpt {
                lane.length() - stop.sidewalk_pos.dist_along()
            } else {
                stop.sidewalk_pos.dist_along()
            };
            let cost = dist
                / Traversable::Lane(lane.id).max_speed_along(
                    max_speed,
                    PathConstraints::Pedestrian,
                    map,
                );
            // Add some extra penalty to using a bus stop. Otherwise a path might try to pass
            // through it uselessly.
            let penalty = Duration::seconds(10.0);
            let sidewalk = nodes.get(WalkingNode::SidewalkEndpoint(
                lane.get_directed_parent(),
                *endpt,
            ));
            input_graph.add_edge(sidewalk, ride_bus, round(cost + penalty));
            input_graph.add_edge(ride_bus, sidewalk, round(cost + penalty));
        }
    }

    let mut used_border_nodes = HashSet::new();

    // Connect each adjacent stop along a route, with the cost based on how long it'll take a
    // bus to drive between the stops. Optimistically assume no waiting time at a stop.
    for route in map.all_bus_routes() {
        // TODO Also plug in border starts
        for pair in route.stops.windows(2) {
            let (stop1, stop2) = (map.get_bs(pair[0]), map.get_bs(pair[1]));
            let req = PathRequest {
                start: stop1.driving_pos,
                end: stop2.driving_pos,
                constraints: route.route_type,
            };
            let maybe_driving_cost = match route.route_type {
                PathConstraints::Bus => bus_graph.pathfind(req, map).map(|p| p.get_cost()),
                // We always use Dijkstra for trains
                PathConstraints::Train => {
                    dijkstra::pathfind(req, map.routing_params(), map).map(|p| p.get_cost())
                }
                _ => unreachable!(),
            };
            if let Some(driving_cost) = maybe_driving_cost {
                input_graph.add_edge(
                    nodes.get(WalkingNode::RideBus(stop1.id)),
                    nodes.get(WalkingNode::RideBus(stop2.id)),
                    round(driving_cost),
                );
            } else {
                panic!(
                    "No bus route from {} to {} now for {}! Prevent this edit",
                    stop1.driving_pos, stop2.driving_pos, route.full_name,
                );
            }
        }

        if let Some(l) = route.end_border {
            let stop1 = map.get_bs(*route.stops.last().unwrap());
            let req = PathRequest {
                start: stop1.driving_pos,
                end: Position::end(l, map),
                constraints: route.route_type,
            };
            let maybe_driving_cost = match route.route_type {
                PathConstraints::Bus => bus_graph.pathfind(req, map).map(|p| p.get_cost()),
                // We always use Dijkstra for trains
                PathConstraints::Train => {
                    dijkstra::pathfind(req, map.routing_params(), map).map(|p| p.get_cost())
                }
                _ => unreachable!(),
            };
            if let Some(driving_cost) = maybe_driving_cost {
                let border = map.get_i(map.get_l(l).dst_i);
                input_graph.add_edge(
                    nodes.get(WalkingNode::RideBus(stop1.id)),
                    nodes.get(WalkingNode::LeaveMap(border.id)),
                    round(driving_cost),
                );
                used_border_nodes.insert(border.id);
            } else {
                panic!(
                    "No bus route from {} to end of {} now for {}! Prevent this edit",
                    stop1.driving_pos, l, route.full_name,
                );
            }
        }
    }

    // InputGraph strips out nodes with no edges, so verify the last border is connected to
    // something.
    // Since no paths will ever reach this unused node, this won't affect results.
    // TODO Upstream a method in InputGraph to do this more clearly.
    if let Some(i) = map.all_outgoing_borders().last() {
        if !used_border_nodes.contains(&i.id) {
            let some_sidewalk = map
                .all_lanes()
                .values()
                .find(|l| l.is_walkable())
                .expect("no sidewalks in map");
            input_graph.add_edge(
                nodes.get(WalkingNode::LeaveMap(i.id)),
                nodes.get(WalkingNode::SidewalkEndpoint(
                    some_sidewalk.get_directed_parent(),
                    true,
                )),
                1,
            );
        }
    }
}

pub fn walking_path_to_steps(path: Vec<WalkingNode>, map: &Map) -> Vec<PathStepV2> {
    let mut steps = Vec::new();

    for pair in path.windows(2) {
        let (r1, r1_endpt) = match pair[0] {
            WalkingNode::SidewalkEndpoint(r, endpt) => (r, endpt),
            WalkingNode::RideBus(_) => unreachable!(),
            WalkingNode::LeaveMap(_) => unreachable!(),
        };
        let r2 = match pair[1] {
            WalkingNode::SidewalkEndpoint(r, _) => r,
            WalkingNode::RideBus(_) => unreachable!(),
            WalkingNode::LeaveMap(_) => unreachable!(),
        };

        if r1 == r2 {
            if r1_endpt {
                steps.push(PathStepV2::Contraflow(r1));
            } else {
                steps.push(PathStepV2::Along(r1));
            }
        } else {
            let i = if r1_endpt {
                r1.dst_i(map)
            } else {
                r1.src_i(map)
            };
            // Could assert the intersection matches (r2, r2_endpt).
            if map
                .get_turn_between(r1.must_get_sidewalk(map), r2.must_get_sidewalk(map), i)
                .is_some()
            {
                steps.push(PathStepV2::Movement(MovementID {
                    from: r1,
                    to: r2,
                    parent: i,
                    crosswalk: true,
                }));
            } else {
                println!("walking_path_to_steps has a weird path:");
                for s in &path {
                    println!("- {:?}", s);
                }
                panic!(
                    "No turn from {} ({}) to {} ({}) at {}",
                    r1,
                    r1.must_get_sidewalk(map),
                    r2,
                    r2.must_get_sidewalk(map),
                    i
                );
            }
        }
    }

    // Don't start or end a path in a turn; sim layer breaks.
    if let PathStepV2::Movement(mvmnt) = steps[0] {
        if mvmnt.from.src_i(map) == mvmnt.parent {
            steps.insert(0, PathStepV2::Contraflow(mvmnt.from));
        } else {
            steps.insert(0, PathStepV2::Along(mvmnt.from));
        }
    }
    if let PathStepV2::Movement(mvmnt) = steps.last().cloned().unwrap() {
        if mvmnt.to.src_i(map) == mvmnt.parent {
            steps.push(PathStepV2::Along(mvmnt.to));
        } else {
            steps.push(PathStepV2::Contraflow(mvmnt.to));
        }
    }

    steps
}

// TODO Do we even need this at all?
pub fn one_step_walking_path(req: PathRequest, map: &Map) -> PathV2 {
    // Weird case, but it can happen for walking from a building path to a bus stop that're
    // actually at the same spot.
    let step = if req.start.dist_along() <= req.end.dist_along() {
        PathStepV2::Along(map.get_l(req.start.lane()).get_directed_parent())
    } else {
        PathStepV2::Contraflow(map.get_l(req.start.lane()).get_directed_parent())
    };
    let mut cost = (req.start.dist_along() - req.end.dist_along()).abs()
        / Traversable::Lane(req.start.lane()).max_speed_along(
            Some(crate::MAX_WALKING_SPEED),
            PathConstraints::Pedestrian,
            map,
        );
    if map.get_l(req.start.lane()).is_shoulder() {
        cost = 2.0 * cost;
    }
    PathV2::new(vec![step], req, cost, Vec::new())
}