1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
use crate::make::traffic_signals::{brute_force, get_possible_policies};
use crate::raw::OriginalRoad;
use crate::{
    osm, DirectedRoadID, IntersectionID, Map, TurnGroup, TurnGroupID, TurnID, TurnPriority,
    TurnType,
};
use abstutil::{deserialize_btreemap, retain_btreeset, serialize_btreemap, Timer};
use geom::Duration;
use serde::{Deserialize, Serialize};
use std::collections::{BTreeMap, BTreeSet};

#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct ControlTrafficSignal {
    pub id: IntersectionID,
    pub phases: Vec<Phase>,
    pub offset: Duration,

    #[serde(
        serialize_with = "serialize_btreemap",
        deserialize_with = "deserialize_btreemap"
    )]
    pub turn_groups: BTreeMap<TurnGroupID, TurnGroup>,
}

#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
pub struct Phase {
    pub protected_groups: BTreeSet<TurnGroupID>,
    pub yield_groups: BTreeSet<TurnGroupID>,
    pub phase_type: PhaseType,
}

#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
pub enum PhaseType {
    Fixed(Duration),
    // Same as fixed, but when this phase would normally end, if there's still incoming demand,
    // repeat the phase entirely.
    // TODO This is a silly policy, but a start towards variable timers.
    Adaptive(Duration),
}

impl PhaseType {
    // TODO Maybe don't have this; force callers to acknowledge different policies
    pub fn simple_duration(&self) -> Duration {
        match self {
            PhaseType::Fixed(d) | PhaseType::Adaptive(d) => *d,
        }
    }
}

impl ControlTrafficSignal {
    pub fn new(map: &Map, id: IntersectionID, timer: &mut Timer) -> ControlTrafficSignal {
        let mut policies = ControlTrafficSignal::get_possible_policies(map, id, timer);
        if policies.len() == 1 {
            timer.warn(format!("Falling back to greedy_assignment for {}", id));
        }
        policies.remove(0).1
    }

    pub fn get_possible_policies(
        map: &Map,
        id: IntersectionID,
        timer: &mut Timer,
    ) -> Vec<(String, ControlTrafficSignal)> {
        get_possible_policies(map, id, timer)
    }
    // TODO tmp
    pub fn brute_force(map: &Map, id: IntersectionID) {
        brute_force(map, id)
    }

    pub fn validate(self) -> Result<ControlTrafficSignal, String> {
        // Does the assignment cover the correct set of groups?
        let expected_groups: BTreeSet<TurnGroupID> = self.turn_groups.keys().cloned().collect();
        let mut actual_groups: BTreeSet<TurnGroupID> = BTreeSet::new();
        for phase in &self.phases {
            actual_groups.extend(phase.protected_groups.iter());
            actual_groups.extend(phase.yield_groups.iter());
        }
        if expected_groups != actual_groups {
            return Err(format!(
                "Traffic signal assignment for {} broken. Missing {:?}, contains irrelevant {:?}",
                self.id,
                expected_groups
                    .difference(&actual_groups)
                    .cloned()
                    .collect::<Vec<_>>(),
                actual_groups
                    .difference(&expected_groups)
                    .cloned()
                    .collect::<Vec<_>>()
            ));
        }

        for phase in &self.phases {
            // Do any of the priority groups in one phase conflict?
            for g1 in phase.protected_groups.iter().map(|g| &self.turn_groups[g]) {
                for g2 in phase.protected_groups.iter().map(|g| &self.turn_groups[g]) {
                    if g1.conflicts_with(g2) {
                        return Err(format!(
                            "Traffic signal has conflicting protected groups in one \
                             phase:\n{:?}\n\n{:?}",
                            g1, g2
                        ));
                    }
                }
            }

            // Do any of the crosswalks yield?
            for g in phase.yield_groups.iter().map(|g| &self.turn_groups[g]) {
                assert!(g.turn_type != TurnType::Crosswalk);
            }
        }

        Ok(self)
    }

    // Returns true if this did anything
    pub fn convert_to_ped_scramble(&mut self) -> bool {
        let orig = self.clone();

        let mut all_walk_phase = Phase::new();
        for g in self.turn_groups.values() {
            if g.turn_type == TurnType::Crosswalk {
                all_walk_phase.edit_group(g, TurnPriority::Protected);
            }
        }

        // Remove Crosswalk groups from existing phases.
        let mut replaced = std::mem::replace(&mut self.phases, Vec::new());
        let mut has_all_walk = false;
        for phase in replaced.iter_mut() {
            if !has_all_walk && phase == &all_walk_phase {
                has_all_walk = true;
                continue;
            }

            // Crosswalks are only in protected_groups.
            retain_btreeset(&mut phase.protected_groups, |g| {
                self.turn_groups[g].turn_type != TurnType::Crosswalk
            });

            // Blindly try to promote yield groups to protected, now that crosswalks are gone.
            let mut promoted = Vec::new();
            for g in &phase.yield_groups {
                if phase.could_be_protected(*g, &self.turn_groups) {
                    phase.protected_groups.insert(*g);
                    promoted.push(*g);
                }
            }
            for g in promoted {
                phase.yield_groups.remove(&g);
            }
        }
        self.phases = replaced;

        if !has_all_walk {
            self.phases.push(all_walk_phase);
        }
        self != &orig
    }

    pub fn turn_to_group(&self, turn: TurnID) -> TurnGroupID {
        if let Some(tg) = self
            .turn_groups
            .values()
            .find(|tg| tg.members.contains(&turn))
        {
            tg.id
        } else {
            panic!("{} doesn't belong to any turn groups", turn)
        }
    }

    pub fn missing_turns(&self) -> BTreeSet<TurnGroupID> {
        let mut missing: BTreeSet<TurnGroupID> = self.turn_groups.keys().cloned().collect();
        for phase in &self.phases {
            for g in &phase.protected_groups {
                missing.remove(g);
            }
            for g in &phase.yield_groups {
                missing.remove(g);
            }
        }
        missing
    }
}

impl Phase {
    pub fn new() -> Phase {
        Phase {
            protected_groups: BTreeSet::new(),
            yield_groups: BTreeSet::new(),
            phase_type: PhaseType::Fixed(Duration::seconds(30.0)),
        }
    }

    pub fn could_be_protected(
        &self,
        g1: TurnGroupID,
        turn_groups: &BTreeMap<TurnGroupID, TurnGroup>,
    ) -> bool {
        let group1 = &turn_groups[&g1];
        for g2 in &self.protected_groups {
            if g1 == *g2 || group1.conflicts_with(&turn_groups[g2]) {
                return false;
            }
        }
        true
    }

    pub fn get_priority_of_turn(&self, t: TurnID, parent: &ControlTrafficSignal) -> TurnPriority {
        self.get_priority_of_group(parent.turn_to_group(t))
    }

    pub fn get_priority_of_group(&self, g: TurnGroupID) -> TurnPriority {
        if self.protected_groups.contains(&g) {
            TurnPriority::Protected
        } else if self.yield_groups.contains(&g) {
            TurnPriority::Yield
        } else {
            TurnPriority::Banned
        }
    }

    pub fn edit_group(&mut self, g: &TurnGroup, pri: TurnPriority) {
        let mut ids = vec![g.id];
        if g.turn_type == TurnType::Crosswalk {
            ids.push(TurnGroupID {
                from: g.id.to,
                to: g.id.from,
                parent: g.id.parent,
                crosswalk: true,
            });
        }
        for id in ids {
            self.protected_groups.remove(&id);
            self.yield_groups.remove(&id);
            if pri == TurnPriority::Protected {
                self.protected_groups.insert(id);
            } else if pri == TurnPriority::Yield {
                self.yield_groups.insert(id);
            }
        }
    }
}

impl ControlTrafficSignal {
    pub fn export(&self, map: &Map) -> seattle_traffic_signals::TrafficSignal {
        seattle_traffic_signals::TrafficSignal {
            intersection_osm_node_id: map.get_i(self.id).orig_id.0,
            phases: self
                .phases
                .iter()
                .map(|p| seattle_traffic_signals::Phase {
                    protected_turns: p
                        .protected_groups
                        .iter()
                        .map(|t| export_turn_group(t, map))
                        .collect(),
                    permitted_turns: p
                        .yield_groups
                        .iter()
                        .map(|t| export_turn_group(t, map))
                        .collect(),
                    phase_type: match p.phase_type {
                        PhaseType::Fixed(d) => {
                            seattle_traffic_signals::PhaseType::Fixed(d.inner_seconds() as usize)
                        }
                        PhaseType::Adaptive(d) => {
                            seattle_traffic_signals::PhaseType::Adaptive(d.inner_seconds() as usize)
                        }
                    },
                })
                .collect(),
            offset_seconds: self.offset.inner_seconds() as usize,
        }
    }

    pub fn import(
        raw: seattle_traffic_signals::TrafficSignal,
        id: IntersectionID,
        map: &Map,
    ) -> Result<ControlTrafficSignal, String> {
        let mut phases = Vec::new();
        for p in raw.phases {
            let num_protected = p.protected_turns.len();
            let num_permitted = p.permitted_turns.len();
            let protected_groups = p
                .protected_turns
                .into_iter()
                .filter_map(|t| import_turn_group(t, map))
                .collect::<BTreeSet<_>>();
            let yield_groups = p
                .permitted_turns
                .into_iter()
                .filter_map(|t| import_turn_group(t, map))
                .collect::<BTreeSet<_>>();
            if protected_groups.len() == num_protected && yield_groups.len() == num_permitted {
                phases.push(Phase {
                    protected_groups,
                    yield_groups,
                    phase_type: match p.phase_type {
                        seattle_traffic_signals::PhaseType::Fixed(d) => {
                            PhaseType::Fixed(Duration::seconds(d as f64))
                        }
                        seattle_traffic_signals::PhaseType::Adaptive(d) => {
                            PhaseType::Adaptive(Duration::seconds(d as f64))
                        }
                    },
                });
            } else {
                return Err(format!(
                    "Failed to import some of the turn groups for {}",
                    raw.intersection_osm_node_id
                ));
            }
        }
        ControlTrafficSignal {
            id,
            phases,
            offset: Duration::seconds(raw.offset_seconds as f64),
            turn_groups: TurnGroup::for_i(id, map).unwrap(),
        }
        .validate()
    }
}

fn export_turn_group(id: &TurnGroupID, map: &Map) -> seattle_traffic_signals::Turn {
    let from = map.get_r(id.from.id).orig_id;
    let to = map.get_r(id.to.id).orig_id;

    seattle_traffic_signals::Turn {
        from: seattle_traffic_signals::DirectedRoad {
            osm_way_id: from.osm_way_id.0,
            osm_node1: from.i1.0,
            osm_node2: from.i2.0,
            is_forwards: id.from.forwards,
        },
        to: seattle_traffic_signals::DirectedRoad {
            osm_way_id: to.osm_way_id.0,
            osm_node1: to.i1.0,
            osm_node2: to.i2.0,
            is_forwards: id.to.forwards,
        },
        intersection_osm_node_id: map.get_i(id.parent).orig_id.0,
        is_crosswalk: id.crosswalk,
    }
}

fn import_turn_group(id: seattle_traffic_signals::Turn, map: &Map) -> Option<TurnGroupID> {
    Some(TurnGroupID {
        from: find_r(id.from, map)?,
        to: find_r(id.to, map)?,
        parent: map
            .find_i_by_osm_id(osm::NodeID(id.intersection_osm_node_id))
            .ok()?,
        crosswalk: id.is_crosswalk,
    })
}

fn find_r(id: seattle_traffic_signals::DirectedRoad, map: &Map) -> Option<DirectedRoadID> {
    Some(DirectedRoadID {
        id: map
            .find_r_by_osm_id(OriginalRoad::new(
                id.osm_way_id,
                (id.osm_node1, id.osm_node2),
            ))
            .ok()?,
        forwards: id.is_forwards,
    })
}