1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
use std::collections::{BTreeSet, HashMap};

use geom::Distance;
use map_model::osm::RoadRank;
use map_model::{IntersectionID, Map, PathConstraints, RoadID};

use crate::ltn::{Neighborhood, RatRun};

impl Neighborhood {
    // TODO Doesn't find the full perimeter. But do we really need that?
    pub fn from_road(map: &Map, start: RoadID) -> Neighborhood {
        assert!(Neighborhood::is_interior_road(start, map));

        // Do a simple floodfill from this road, stopping anytime we find a major road
        let mut interior = BTreeSet::new();
        let mut perimeter = BTreeSet::new();
        let mut borders = BTreeSet::new();

        // We don't need a priority queue
        let mut visited = BTreeSet::new();
        let mut queue = vec![start];
        interior.insert(start);

        while !queue.is_empty() {
            let current = map.get_r(queue.pop().unwrap());
            if visited.contains(&current.id) {
                continue;
            }
            visited.insert(current.id);
            for i in [current.src_i, current.dst_i] {
                let (minor, major): (Vec<&RoadID>, Vec<&RoadID>) = map
                    .get_i(i)
                    .roads
                    .iter()
                    .partition(|r| Neighborhood::is_interior_road(**r, map));
                if major.is_empty() {
                    for r in minor {
                        interior.insert(*r);
                        queue.push(*r);
                    }
                } else {
                    borders.insert(i);
                    perimeter.extend(major);
                }
            }
        }

        Neighborhood {
            interior,
            perimeter,
            borders,

            modal_filters: BTreeSet::new(),
            rat_runs: Vec::new(),
        }
    }

    // Just finds a sampling of rat runs, not necessarily all of them
    pub fn calculate_rat_runs(&mut self, map: &Map) {
        // Just flood from each border and see if we can reach another border.
        //
        // We might be able to do this in one pass, seeding the queue with all borders. But I think
        // the "visited" bit would get tangled up between different possibilities...
        self.rat_runs = self
            .borders
            .iter()
            .flat_map(|i| self.rat_run_from(map, *i))
            .collect();
        self.rat_runs
            .sort_by(|a, b| a.length_ratio.partial_cmp(&b.length_ratio).unwrap());
    }

    pub fn toggle_modal_filter(&mut self, map: &Map, r: RoadID) {
        if self.modal_filters.contains(&r) {
            self.modal_filters.remove(&r);
        } else {
            self.modal_filters.insert(r);
        }
        self.calculate_rat_runs(map);
    }

    pub fn is_interior_road(r: RoadID, map: &Map) -> bool {
        let road = map.get_r(r);
        road.get_rank() == RoadRank::Local
            && road
                .lanes
                .iter()
                .any(|l| PathConstraints::Car.can_use(l, map))
    }

    fn rat_run_from(&self, map: &Map, start: IntersectionID) -> Option<RatRun> {
        // We don't need a priority queue
        let mut back_refs = HashMap::new();
        let mut queue = vec![start];

        while !queue.is_empty() {
            let current = queue.pop().unwrap();
            if current != start && self.borders.contains(&current) {
                // Found one!
                let mut at = current;
                let mut path = vec![at];
                while let Some(prev) = back_refs.remove(&at) {
                    path.push(prev);
                    at = prev;
                }
                path.push(start);
                path.reverse();
                return Some(RatRun::new(path, map));
            }

            for r in &map.get_i(current).roads {
                let next = map.get_r(*r).other_endpt(current);
                if !self.interior.contains(r)
                    || self.modal_filters.contains(r)
                    || back_refs.contains_key(&next)
                {
                    continue;
                }
                back_refs.insert(next, current);
                queue.push(next);
            }
        }

        None
    }
}

impl RatRun {
    fn new(path: Vec<IntersectionID>, map: &Map) -> RatRun {
        let mut run = RatRun {
            path,
            length_ratio: 1.0,
        };
        if let Some((roads, _)) = map.simple_path_btwn(run.path[0], *run.path.last().unwrap()) {
            let shortest: Distance = roads.into_iter().map(|r| map.get_r(r).length()).sum();
            let this_path: Distance = run.roads(map).map(|r| r.length()).sum();
            run.length_ratio = this_path / shortest;
        }
        run
    }
}