1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
//! Pathfinding without needing to build a separate contraction hierarchy.

use std::collections::BTreeSet;

use petgraph::graphmap::DiGraphMap;

use geom::Duration;

use crate::pathfind::vehicles::vehicle_cost;
use crate::pathfind::walking::WalkingNode;
use crate::pathfind::zone_cost;
use crate::{
    LaneID, Map, Path, PathConstraints, PathRequest, PathStep, RoutingParams, Traversable, TurnID,
};

// TODO These should maybe keep the DiGraphMaps as state. It's cheap to recalculate it for edits.

pub fn simple_pathfind(
    req: &PathRequest,
    params: &RoutingParams,
    map: &Map,
) -> Option<(Path, Duration)> {
    let graph = build_graph_for_vehicles(map, req.constraints);
    calc_path(graph, req, params, map)
}

pub fn build_graph_for_vehicles(
    map: &Map,
    constraints: PathConstraints,
) -> DiGraphMap<LaneID, TurnID> {
    let mut graph: DiGraphMap<LaneID, TurnID> = DiGraphMap::new();
    for l in map.all_lanes() {
        if constraints.can_use(l, map) {
            for turn in map.get_turns_for(l.id, constraints) {
                graph.add_edge(turn.id.src, turn.id.dst, turn.id);
            }
        }
    }
    graph
}

pub fn pathfind_avoiding_lanes(
    req: PathRequest,
    avoid: BTreeSet<LaneID>,
    map: &Map,
) -> Option<(Path, Duration)> {
    assert_eq!(req.constraints, PathConstraints::Car);
    let mut graph: DiGraphMap<LaneID, TurnID> = DiGraphMap::new();
    for l in map.all_lanes() {
        if req.constraints.can_use(l, map) && !avoid.contains(&l.id) {
            for turn in map.get_turns_for(l.id, req.constraints) {
                graph.add_edge(turn.id.src, turn.id.dst, turn.id);
            }
        }
    }

    calc_path(graph, &req, map.routing_params(), map)
}

fn calc_path(
    graph: DiGraphMap<LaneID, TurnID>,
    req: &PathRequest,
    params: &RoutingParams,
    map: &Map,
) -> Option<(Path, Duration)> {
    let (cost, path) = petgraph::algo::astar(
        &graph,
        req.start.lane(),
        |l| l == req.end.lane(),
        |(_, _, t)| {
            let turn = map.get_t(*t);
            vehicle_cost(map.get_l(turn.id.src), turn, req.constraints, params, map)
                + zone_cost(turn, req.constraints, map)
        },
        |_| Duration::ZERO,
    )?;

    let mut steps = Vec::new();
    for pair in path.windows(2) {
        steps.push(PathStep::Lane(pair[0]));
        // We don't need to look for this turn in the map; we know it exists.
        steps.push(PathStep::Turn(TurnID {
            parent: map.get_l(pair[0]).dst_i,
            src: pair[0],
            dst: pair[1],
        }));
    }
    steps.push(PathStep::Lane(req.end.lane()));
    assert_eq!(steps[0], PathStep::Lane(req.start.lane()));
    Some((Path::new(map, steps, req.clone(), Vec::new()), cost))
}

pub fn build_graph_for_pedestrians(map: &Map) -> DiGraphMap<WalkingNode, Duration> {
    let max_speed = Some(crate::MAX_WALKING_SPEED);
    let mut graph: DiGraphMap<WalkingNode, Duration> = DiGraphMap::new();
    for l in map.all_lanes() {
        if l.is_walkable() {
            let cost = l.length()
                / Traversable::Lane(l.id).max_speed_along(
                    max_speed,
                    PathConstraints::Pedestrian,
                    map,
                );
            let n1 = WalkingNode::SidewalkEndpoint(l.id, true);
            let n2 = WalkingNode::SidewalkEndpoint(l.id, false);
            graph.add_edge(n1, n2, cost);
            graph.add_edge(n2, n1, cost);

            for turn in map.get_turns_for(l.id, PathConstraints::Pedestrian) {
                graph.add_edge(
                    WalkingNode::SidewalkEndpoint(l.id, l.dst_i == turn.id.parent),
                    WalkingNode::SidewalkEndpoint(
                        turn.id.dst,
                        map.get_l(turn.id.dst).dst_i == turn.id.parent,
                    ),
                    turn.geom.length()
                        / Traversable::Turn(turn.id).max_speed_along(
                            max_speed,
                            PathConstraints::Pedestrian,
                            map,
                        )
                        + zone_cost(turn, PathConstraints::Pedestrian, map),
                );
            }
        }
    }
    graph
}

pub fn simple_walking_path(req: &PathRequest, map: &Map) -> Option<Vec<WalkingNode>> {
    let graph = build_graph_for_pedestrians(map);

    let closest_start = WalkingNode::closest(req.start, map);
    let closest_end = WalkingNode::closest(req.end, map);
    let (_, path) = petgraph::algo::astar(
        &graph,
        closest_start,
        |end| end == closest_end,
        |(_, _, cost)| *cost,
        |_| Duration::ZERO,
    )?;
    Some(path)
}