1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
//! All sorts of read-only queries about a simulation

use anyhow::Result;
use serde::Serialize;
use std::collections::{BTreeMap, BTreeSet};

use abstutil::Counter;
use geom::{Distance, Duration, PolyLine, Pt2D, Time};
use map_model::{
    BuildingID, BusRouteID, BusStopID, IntersectionID, Lane, LaneID, Map, Path, PathConstraints,
    Position, RoadID, Traversable, TurnID,
};

use crate::analytics::SlidingWindow;
use crate::{
    AgentID, AgentType, Analytics, CarID, CommutersVehiclesCounts, DrawCarInput, DrawPedCrowdInput,
    DrawPedestrianInput, OrigPersonID, PandemicModel, ParkedCar, ParkingSim, PedestrianID, Person,
    PersonID, PersonState, Scenario, Sim, TripEndpoint, TripID, TripInfo, TripMode, TripResult,
    UnzoomedAgent, VehicleType,
};

// TODO Many of these just delegate to an inner piece. This is unorganized and hard to maintain.
impl Sim {
    pub fn time(&self) -> Time {
        self.time
    }

    pub fn is_done(&self) -> bool {
        self.trips.is_done()
    }

    pub fn is_empty(&self) -> bool {
        self.time == Time::START_OF_DAY && self.is_done()
    }

    /// (number of finished trips, number of unfinished trips)
    pub fn num_trips(&self) -> (usize, usize) {
        self.trips.num_trips()
    }
    pub fn num_agents(&self) -> Counter<AgentType> {
        self.trips.num_agents(&self.transit)
    }
    pub fn num_commuters_vehicles(&self) -> CommutersVehiclesCounts {
        self.trips
            .num_commuters_vehicles(&self.transit, &self.walking)
    }
    /// (total number of people, just in buildings, just off map)
    pub fn num_ppl(&self) -> (usize, usize, usize) {
        self.trips.num_ppl()
    }

    pub fn debug_ped(&self, id: PedestrianID) {
        self.walking.debug_ped(id);
        self.trips.debug_trip(AgentID::Pedestrian(id));
    }

    pub fn debug_car(&self, id: CarID) {
        self.driving.debug_car(id);
        self.trips.debug_trip(AgentID::Car(id));
    }

    /// Return a short string to debug a car in the UI.
    pub fn debug_car_ui(&self, id: CarID) -> String {
        self.driving.debug_car_ui(id)
    }

    pub fn debug_intersection(&self, id: IntersectionID, map: &Map) {
        self.intersections.debug(id, map);
    }

    pub fn debug_lane(&self, id: LaneID) {
        self.driving.debug_lane(id);
    }

    /// Only call for active agents, will panic otherwise
    pub fn agent_properties(&self, map: &Map, id: AgentID) -> AgentProperties {
        match id {
            AgentID::Pedestrian(id) => self.walking.agent_properties(map, id, self.time),
            AgentID::Car(id) => self.driving.agent_properties(id, self.time),
            // TODO Harder to measure some of this stuff
            AgentID::BusPassenger(_, _) => AgentProperties {
                total_time: Duration::ZERO,
                waiting_here: Duration::ZERO,
                total_waiting: Duration::ZERO,
                dist_crossed: Distance::ZERO,
                total_dist: Distance::meters(0.1),
            },
        }
    }

    pub fn num_transit_passengers(&self, car: CarID) -> usize {
        self.transit.get_passengers(car).len()
    }

    pub fn bus_route_id(&self, maybe_bus: CarID) -> Option<BusRouteID> {
        if maybe_bus.vehicle_type == VehicleType::Bus
            || maybe_bus.vehicle_type == VehicleType::Train
        {
            Some(self.transit.bus_route(maybe_bus))
        } else {
            None
        }
    }

    pub fn active_agents(&self) -> Vec<AgentID> {
        self.trips.active_agents()
    }
    pub fn num_active_agents(&self) -> usize {
        self.trips.num_active_agents()
    }

    pub fn agent_to_trip(&self, id: AgentID) -> Option<TripID> {
        self.trips.agent_to_trip(id)
    }

    pub fn trip_to_agent(&self, id: TripID) -> TripResult<AgentID> {
        self.trips.trip_to_agent(id)
    }

    pub fn trip_info(&self, id: TripID) -> TripInfo {
        self.trips.trip_info(id)
    }
    pub fn all_trip_info(&self) -> Vec<(TripID, TripInfo)> {
        self.trips.all_trip_info()
    }
    /// If trip is finished, returns (total time, total waiting time, total distance)
    pub fn finished_trip_details(&self, id: TripID) -> Option<(Duration, Duration, Distance)> {
        self.trips.finished_trip_details(id)
    }
    // Returns the total time a trip was blocked for
    pub fn trip_blocked_time(&self, id: TripID) -> Duration {
        self.trips.trip_blocked_time(id)
    }

    pub fn trip_to_person(&self, id: TripID) -> Option<PersonID> {
        self.trips.trip_to_person(id)
    }
    // TODO This returns None for parked cars owned by people! That's confusing. Dedupe with
    // get_owner_of_car.
    pub fn agent_to_person(&self, id: AgentID) -> Option<PersonID> {
        self.agent_to_trip(id)
            .map(|t| self.trip_to_person(t).unwrap())
    }
    pub fn person_to_agent(&self, id: PersonID) -> Option<AgentID> {
        if let PersonState::Trip(t) = self.trips.get_person(id)?.state {
            self.trip_to_agent(t).ok()
        } else {
            None
        }
    }
    pub fn get_owner_of_car(&self, id: CarID) -> Option<PersonID> {
        self.driving
            .get_owner_of_car(id)
            .or_else(|| self.parking.get_owner_of_car(id))
    }
    pub fn lookup_parked_car(&self, id: CarID) -> Option<&ParkedCar> {
        self.parking.lookup_parked_car(id)
    }
    /// For every parked car, (position of parking spot, position of owner)
    pub fn all_parked_car_positions(&self, map: &Map) -> Vec<(Position, Position)> {
        self.parking
            .all_parked_car_positions(map)
            .into_iter()
            .filter_map(|(car_pos, owner)| {
                // TODO Should include people off-map and in the middle of a non-car trip too
                match self.trips.get_person(owner)?.state {
                    PersonState::Inside(b) => Some((car_pos, map.get_b(b).sidewalk_pos)),
                    PersonState::Trip(_) => None,
                    PersonState::OffMap => None,
                }
            })
            .collect()
    }

    pub fn lookup_person(&self, id: PersonID) -> Option<&Person> {
        self.trips.get_person(id)
    }
    pub fn get_person(&self, id: PersonID) -> &Person {
        self.trips.get_person(id).unwrap()
    }
    pub fn find_person_by_orig_id(&self, id: OrigPersonID) -> Option<PersonID> {
        for p in self.get_all_people() {
            if p.orig_id == Some(id) {
                return Some(p.id);
            }
        }
        None
    }
    pub fn get_all_people(&self) -> &Vec<Person> {
        self.trips.get_all_people()
    }

    pub fn lookup_car_id(&self, idx: usize) -> Option<CarID> {
        for vehicle_type in [
            VehicleType::Car,
            VehicleType::Bike,
            VehicleType::Bus,
            VehicleType::Train,
        ] {
            let id = CarID {
                id: idx,
                vehicle_type,
            };
            if self.driving.does_car_exist(id) {
                return Some(id);
            }
        }

        let id = CarID {
            id: idx,
            vehicle_type: VehicleType::Car,
        };
        // Only cars can be parked.
        if self.parking.lookup_parked_car(id).is_some() {
            return Some(id);
        }

        None
    }

    pub fn get_path(&self, id: AgentID) -> Option<&Path> {
        match id {
            AgentID::Car(car) => self.driving.get_path(car),
            AgentID::Pedestrian(ped) => self.walking.get_path(ped),
            AgentID::BusPassenger(_, _) => None,
        }
    }
    pub fn get_all_driving_paths(&self) -> Vec<&Path> {
        self.driving.get_all_driving_paths()
    }

    pub fn trace_route(&self, id: AgentID, map: &Map) -> Option<PolyLine> {
        match id {
            AgentID::Car(car) => self.driving.trace_route(self.time, car, map),
            AgentID::Pedestrian(ped) => self.walking.trace_route(self.time, ped, map),
            AgentID::BusPassenger(_, _) => None,
        }
    }

    pub fn get_canonical_pt_per_trip(&self, trip: TripID, map: &Map) -> TripResult<Pt2D> {
        let agent = match self.trips.trip_to_agent(trip) {
            TripResult::Ok(a) => a,
            x => {
                return x.propagate_error();
            }
        };
        if let Some(pt) = self.canonical_pt_for_agent(agent, map) {
            return TripResult::Ok(pt);
        }
        TripResult::ModeChange
    }
    pub fn get_canonical_pt_per_person(&self, p: PersonID, map: &Map) -> Option<Pt2D> {
        match self.trips.get_person(p)?.state {
            PersonState::Inside(b) => Some(map.get_b(b).polygon.center()),
            PersonState::Trip(t) => self.get_canonical_pt_per_trip(t, map).ok(),
            PersonState::OffMap => None,
        }
    }

    pub fn canonical_pt_for_agent(&self, id: AgentID, map: &Map) -> Option<Pt2D> {
        match id {
            AgentID::Car(id) => self
                .parking
                .canonical_pt(id, map)
                .or_else(|| Some(self.get_draw_car(id, map)?.body.last_pt())),
            AgentID::Pedestrian(id) => Some(self.get_draw_ped(id, map)?.pos),
            AgentID::BusPassenger(_, bus) => Some(self.get_draw_car(bus, map)?.body.last_pt()),
        }
    }

    pub fn get_accepted_agents(&self, id: IntersectionID) -> Vec<(AgentID, TurnID)> {
        self.intersections.get_accepted_agents(id)
    }
    pub fn get_waiting_agents(&self, id: IntersectionID) -> Vec<(AgentID, TurnID, Time)> {
        self.intersections.get_waiting_agents(id)
    }

    /// For every agent that's currently not moving, figure out how long they've been waiting and
    /// why they're blocked.
    pub fn get_blocked_by_graph(&self, map: &Map) -> BTreeMap<AgentID, (Duration, DelayCause)> {
        // Pedestrians can only be blocked at intersections, which is handled inside this call
        self.driving
            .get_blocked_by_graph(self.time, map, &self.intersections)
    }

    /// (bus, stop index it's coming from, percent to next stop, location)
    pub fn status_of_buses(
        &self,
        route: BusRouteID,
        map: &Map,
    ) -> Vec<(CarID, Option<usize>, f64, Pt2D)> {
        let mut results = Vec::new();
        for (bus, stop_idx) in self.transit.buses_for_route(route) {
            results.push((
                bus,
                stop_idx,
                self.driving.percent_along_route(bus),
                self.canonical_pt_for_agent(AgentID::Car(bus), map).unwrap(),
            ));
        }
        results
    }

    pub fn get_analytics(&self) -> &Analytics {
        &self.analytics
    }

    /// For intersections with an agent waiting beyond some threshold, return when they started
    /// waiting. Sorted by earliest waiting (likely the root cause of gridlock).
    pub fn delayed_intersections(&self, threshold: Duration) -> Vec<(IntersectionID, Time)> {
        self.intersections
            .delayed_intersections(self.time, threshold)
    }

    pub fn bldg_to_people(&self, b: BuildingID) -> Vec<PersonID> {
        self.trips.bldg_to_people(b)
    }

    pub fn get_pandemic_model(&self) -> Option<&PandemicModel> {
        self.pandemic.as_ref()
    }

    pub fn get_end_of_day(&self) -> Time {
        // Always count at least 24 hours
        // TODO This should be min()? Also, the end of the day will keep shifting every time we run
        // this query, since the trips near the end of the day will schedule more events as they
        // progress.
        self.scheduler
            .get_last_time()
            .max(Time::START_OF_DAY + Duration::hours(24))
    }

    pub fn current_stage_and_remaining_time(&self, i: IntersectionID) -> (usize, Duration) {
        self.intersections
            .current_stage_and_remaining_time(self.time, i)
    }

    // TODO This is an awkward copy of raw_throughput
    // TODO And it does NOT count buses/trains spawning
    pub fn all_arrivals_at_border(
        &self,
        i: IntersectionID,
    ) -> Vec<(AgentType, Vec<(Time, usize)>)> {
        let window_size = Duration::hours(1);
        let mut pts_per_type: BTreeMap<AgentType, Vec<(Time, usize)>> = BTreeMap::new();
        let mut windows_per_type: BTreeMap<AgentType, SlidingWindow> = BTreeMap::new();
        for agent_type in AgentType::all() {
            pts_per_type.insert(agent_type, vec![(Time::START_OF_DAY, 0)]);
            windows_per_type.insert(agent_type, SlidingWindow::new(window_size));
        }

        for (t, agent_type) in self.trips.all_arrivals_at_border(i) {
            let count = windows_per_type.get_mut(&agent_type).unwrap().add(t);
            pts_per_type.get_mut(&agent_type).unwrap().push((t, count));
        }

        for (agent_type, pts) in pts_per_type.iter_mut() {
            let mut window = windows_per_type.remove(agent_type).unwrap();
            window.close_off_pts(pts, self.get_end_of_day());
        }

        pts_per_type.into_iter().collect()
    }

    /// (number of vehicles in the lane, penalty if a bike or other slow vehicle is present)
    pub fn target_lane_penalty(&self, lane: &Lane) -> (usize, usize) {
        if lane.is_walkable() {
            (0, 0)
        } else {
            self.driving.target_lane_penalty(lane.id)
        }
    }

    pub fn get_people_waiting_at_stop(
        &self,
        at: BusStopID,
    ) -> &Vec<(PedestrianID, BusRouteID, Option<BusStopID>, Time)> {
        self.transit.get_people_waiting_at_stop(at)
    }

    pub fn generate_scenario(&self, map: &Map, name: String) -> Scenario {
        self.trips.generate_scenario(map, name)
    }

    pub fn get_cap_counter(&self, r: RoadID) -> usize {
        self.cap.get_cap_counter(r)
    }

    pub fn infinite_parking(&self) -> bool {
        self.parking.is_infinite()
    }

    pub fn all_waiting_people(&self) -> BTreeMap<PersonID, Duration> {
        let mut delays = BTreeMap::new();
        self.walking.all_waiting_people(self.time, &mut delays);
        self.driving.all_waiting_people(self.time, &mut delays);
        delays
    }

    pub fn describe_internal_stats(&self) -> Vec<String> {
        let mut stats = self.scheduler.describe_stats();
        stats.push(String::new());
        stats.extend(self.intersections.describe_stats());
        stats
    }

    pub fn debug_queue_lengths(&self, l: LaneID) -> Option<(Distance, Distance)> {
        self.driving.debug_queue_lengths(l)
    }

    /// Returns the best-case time for a trip in a world with no traffic or intersection delays.
    /// Might fail in some cases where the real trip succeeds, but the single-mode path can't be
    /// found. Assumes the TripID exists.
    pub fn get_trip_time_lower_bound(&self, map: &Map, id: TripID) -> Result<Duration> {
        let info = self.trips.trip_info(id);
        match TripEndpoint::path_req(info.start, info.end, info.mode, map) {
            Some(req) => {
                let path = map.pathfind(req)?;
                let person = self
                    .trips
                    .get_person(self.trips.trip_to_person(id).unwrap())
                    .unwrap();
                let mut constraints = info.mode.to_constraints();
                // TODO Fix TripMode.to_constraints
                if info.mode == TripMode::Transit {
                    constraints = PathConstraints::Pedestrian;
                }
                let max_speed = match info.mode {
                    TripMode::Walk | TripMode::Transit => Some(person.ped_speed),
                    // TODO We should really search the vehicles and grab it from there
                    TripMode::Drive => None,
                    // Assume just one bike
                    TripMode::Bike => {
                        person
                            .vehicles
                            .iter()
                            .find(|v| v.vehicle_type == VehicleType::Bike)
                            .unwrap()
                            .max_speed
                    }
                };
                Ok(path.estimate_duration(map, constraints, max_speed))
            }
            None => bail!(
                "can't figure out PathRequest from {:?} to {:?} via {}",
                info.start,
                info.end,
                info.mode.ongoing_verb()
            ),
        }
    }

    pub fn get_highlighted_people(&self) -> &Option<BTreeSet<PersonID>> {
        &self.highlighted_people
    }
}

// Drawing
impl Sim {
    pub fn step_count(&self) -> usize {
        self.step_count
    }

    pub fn get_draw_car(&self, id: CarID, map: &Map) -> Option<DrawCarInput> {
        self.parking.get_draw_car(id, map).or_else(|| {
            self.driving
                .get_single_draw_car(id, self.time, map, &self.transit)
        })
    }

    pub fn get_draw_ped(&self, id: PedestrianID, map: &Map) -> Option<DrawPedestrianInput> {
        self.walking.get_draw_ped(id, self.time, map)
    }

    pub fn get_draw_cars(&self, on: Traversable, map: &Map) -> Vec<DrawCarInput> {
        let mut results = Vec::new();
        if let Traversable::Lane(l) = on {
            if map.get_l(l).is_parking() {
                return self.parking.get_draw_cars(l, map);
            }
            results.extend(self.parking.get_draw_cars_in_lots(l, map));
        }
        results.extend(
            self.driving
                .get_draw_cars_on(self.time, on, map, &self.transit),
        );
        results
    }

    pub fn get_draw_peds(
        &self,
        on: Traversable,
        map: &Map,
    ) -> (Vec<DrawPedestrianInput>, Vec<DrawPedCrowdInput>) {
        self.walking.get_draw_peds_on(self.time, on, map)
    }

    pub fn get_all_draw_cars(&self, map: &Map) -> Vec<DrawCarInput> {
        let mut result = self
            .driving
            .get_all_draw_cars(self.time, map, &self.transit);
        result.extend(self.parking.get_all_draw_cars(map));
        result
    }

    pub fn get_all_draw_peds(&self, map: &Map) -> Vec<DrawPedestrianInput> {
        self.walking.get_all_draw_peds(self.time, map)
    }

    /// This does not include transit riders. Some callers need those in addition, but the
    /// rendering ones don't.
    pub fn get_unzoomed_agents(&self, map: &Map) -> Vec<UnzoomedAgent> {
        let mut result = self.driving.get_unzoomed_agents(self.time, map);
        result.extend(self.walking.get_unzoomed_agents(self.time, map));
        result
    }
    pub fn get_unzoomed_transit_riders(&self, map: &Map) -> Vec<UnzoomedAgent> {
        self.transit
            .get_unzoomed_transit_riders(self.time, &self.driving, map)
    }
}

pub struct AgentProperties {
    // TODO Of this leg of the trip only!
    pub total_time: Duration,
    pub waiting_here: Duration,
    pub total_waiting: Duration,

    pub dist_crossed: Distance,
    pub total_dist: Distance,
}

/// Why is an agent delayed? If there are multiple reasons, arbitrarily pick one -- ie, somebody
/// could be blocked by two conflicting turns.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Serialize)]
pub enum DelayCause {
    /// Queued behind someone, or someone's doing a conflicting turn, or someone's eating up space
    /// in a target queue
    Agent(AgentID),
    /// Waiting on a traffic signal to change, or pausing at a stop sign before proceeding
    Intersection(IntersectionID),
}