1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
use std::collections::{HashMap, HashSet};

use abstutil::MultiMap;
use geom::{Duration, Polygon};
use map_gui::tools::Grid;
use map_model::{
    connectivity, AmenityType, BuildingID, BuildingType, LaneType, Map, Path, PathConstraints,
    PathRequest,
};
use widgetry::{Color, Drawable, EventCtx, GeomBatch};

use crate::App;

/// Represents the area reachable from a single building.
pub struct Isochrone {
    /// The center of the isochrone
    pub start: BuildingID,
    /// The options used to generate this isochrone
    pub options: Options,
    /// Colored polygon contours, uploaded to the GPU and ready for drawing
    pub draw: Drawable,
    /// How far away is each building from the start?
    pub time_to_reach_building: HashMap<BuildingID, Duration>,
    /// Per category of amenity, what buildings have that?
    pub amenities_reachable: MultiMap<AmenityType, BuildingID>,
    /// How many people live in the returned area, according to estimates included in the map (from
    /// city-specific parcel data, guesses from census, or a guess based on OSM tags)
    pub population: usize,
    /// How many sreet parking spots are on the same road as any buildings returned.
    pub onstreet_parking_spots: usize,
}

/// The constraints on how we're moving.
#[derive(Clone)]
pub enum Options {
    Walking(connectivity::WalkingOptions),
    Biking,
}

impl Options {
    pub fn time_to_reach_building(
        self,
        map: &Map,
        start: BuildingID,
    ) -> HashMap<BuildingID, Duration> {
        match self {
            Options::Walking(opts) => {
                connectivity::all_walking_costs_from(map, start, Duration::minutes(15), opts)
            }
            Options::Biking => connectivity::all_vehicle_costs_from(
                map,
                start,
                Duration::minutes(15),
                PathConstraints::Bike,
            ),
        }
    }
}

impl Isochrone {
    pub fn new(ctx: &mut EventCtx, app: &App, start: BuildingID, options: Options) -> Isochrone {
        let time_to_reach_building = options.clone().time_to_reach_building(&app.map, start);

        let mut amenities_reachable = MultiMap::new();
        let mut population = 0;
        let mut all_roads = HashSet::new();
        for b in time_to_reach_building.keys() {
            let bldg = app.map.get_b(*b);
            for amenity in &bldg.amenities {
                if let Some(category) = AmenityType::categorize(&amenity.amenity_type) {
                    amenities_reachable.insert(category, bldg.id);
                }
            }
            match bldg.bldg_type {
                BuildingType::Residential { num_residents, .. }
                | BuildingType::ResidentialCommercial(num_residents, _) => {
                    population += num_residents;
                }
                _ => {}
            }
            all_roads.insert(app.map.get_l(bldg.sidewalk_pos.lane()).parent);
        }

        let mut onstreet_parking_spots = 0;
        for r in all_roads {
            let r = app.map.get_r(r);
            for (l, _, lt) in r.lanes_ltr() {
                if lt == LaneType::Parking {
                    onstreet_parking_spots +=
                        app.map.get_l(l).number_parking_spots(app.map.get_config());
                }
            }
        }

        let mut i = Isochrone {
            start,
            options,
            draw: Drawable::empty(ctx),
            time_to_reach_building,
            amenities_reachable,
            population,
            onstreet_parking_spots,
        };
        i.draw = i.draw_isochrone(app).upload(ctx);
        i
    }

    pub fn path_to(&self, map: &Map, to: BuildingID) -> Option<Path> {
        // Don't draw paths to places far away
        if !self.time_to_reach_building.contains_key(&to) {
            return None;
        }

        let req = PathRequest::between_buildings(
            map,
            self.start,
            to,
            match self.options {
                Options::Walking(_) => PathConstraints::Pedestrian,
                Options::Biking => PathConstraints::Bike,
            },
        )?;
        map.pathfind(req).ok()
    }

    pub fn draw_isochrone(&self, app: &App) -> GeomBatch {
        // To generate the polygons covering areas between 0-5 mins, 5-10 mins, etc, we have to feed
        // in a 2D grid of costs. Use a 100x100 meter resolution.
        let bounds = app.map.get_bounds();
        let resolution_m = 100.0;
        // The costs we're storing are currenly durations, but the contour crate needs f64, so
        // just store the number of seconds.
        let mut grid: Grid<f64> = Grid::new(
            (bounds.width() / resolution_m).ceil() as usize,
            (bounds.height() / resolution_m).ceil() as usize,
            0.0,
        );

        // Calculate the cost from the start building to every other building in the map
        for (b, cost) in &self.time_to_reach_building {
            // What grid cell does the building belong to?
            let pt = app.map.get_b(*b).polygon.center();
            let idx = grid.idx(
                ((pt.x() - bounds.min_x) / resolution_m) as usize,
                ((pt.y() - bounds.min_y) / resolution_m) as usize,
            );
            // Don't add! If two buildings map to the same cell, we should pick a finer resolution.
            grid.data[idx] = cost.inner_seconds();
        }

        // Generate polygons covering the contour line where the cost in the grid crosses these
        // threshold values.
        let thresholds = vec![
            0.1,
            Duration::minutes(5).inner_seconds(),
            Duration::minutes(10).inner_seconds(),
            Duration::minutes(15).inner_seconds(),
        ];
        // And color the polygon for each threshold
        let colors = vec![
            Color::GREEN.alpha(0.5),
            Color::ORANGE.alpha(0.5),
            Color::RED.alpha(0.5),
        ];
        let smooth = false;
        let c = contour::ContourBuilder::new(grid.width as u32, grid.height as u32, smooth);
        let mut batch = GeomBatch::new();
        // The last feature returned will be larger than the last threshold value. We don't want to
        // display that at all. zip() will omit this last pair, since colors.len() ==
        // thresholds.len() - 1.
        //
        // TODO Actually, this still isn't working. I think each polygon is everything > the
        // threshold, not everything between two thresholds?
        for (feature, color) in c
            .contours(&grid.data, &thresholds)
            .unwrap()
            .into_iter()
            .zip(colors)
        {
            match feature.geometry.unwrap().value {
                geojson::Value::MultiPolygon(polygons) => {
                    for p in polygons {
                        batch.push(color, Polygon::from_geojson(&p).scale(resolution_m));
                    }
                }
                _ => unreachable!(),
            }
        }

        batch
    }
}