use std::collections::VecDeque;
use std::fmt;
use anyhow::Result;
use enumset::EnumSetType;
use serde::{Deserialize, Serialize};
use geom::{Distance, Duration, PolyLine, Speed, EPSILON_DIST};
pub use self::ch::ContractionHierarchyPathfinder;
pub use self::dijkstra::{build_graph_for_pedestrians, build_graph_for_vehicles};
pub use self::driving::driving_cost;
pub use self::pathfinder::Pathfinder;
pub use self::walking::{walking_cost, WalkingNode};
use crate::{
osm, BuildingID, Lane, LaneID, LaneType, Map, Position, Traversable, TurnID, UberTurn,
};
mod ch;
mod dijkstra;
mod driving;
mod node_map;
mod pathfinder;
pub mod uber_turns;
mod walking;
#[derive(Debug, Clone, Copy, Serialize, Deserialize, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum PathStep {
Lane(LaneID),
ContraflowLane(LaneID),
Turn(TurnID),
}
impl PathStep {
pub fn as_traversable(&self) -> Traversable {
match self {
PathStep::Lane(id) => Traversable::Lane(*id),
PathStep::ContraflowLane(id) => Traversable::Lane(*id),
PathStep::Turn(id) => Traversable::Turn(*id),
}
}
pub fn as_lane(&self) -> LaneID {
self.as_traversable().as_lane()
}
pub fn as_turn(&self) -> TurnID {
self.as_traversable().as_turn()
}
fn exact_slice(
&self,
map: &Map,
start: Distance,
dist_ahead: Option<Distance>,
) -> Result<PolyLine> {
if let Some(d) = dist_ahead {
if d < Distance::ZERO {
panic!("Negative dist_ahead?! {}", d);
}
if d == Distance::ZERO {
bail!("0 dist ahead for slice");
}
}
match self {
PathStep::Lane(id) => {
let pts = &map.get_l(*id).lane_center_pts;
if let Some(d) = dist_ahead {
pts.maybe_exact_slice(start, start + d)
} else {
pts.maybe_exact_slice(start, pts.length())
}
}
PathStep::ContraflowLane(id) => {
let pts = map.get_l(*id).lane_center_pts.reversed();
let reversed_start = pts.length() - start;
if let Some(d) = dist_ahead {
pts.maybe_exact_slice(reversed_start, reversed_start + d)
} else {
pts.maybe_exact_slice(reversed_start, pts.length())
}
}
PathStep::Turn(id) => {
let pts = &map.get_t(*id).geom;
if let Some(d) = dist_ahead {
pts.maybe_exact_slice(start, start + d)
} else {
pts.maybe_exact_slice(start, pts.length())
}
}
}
}
}
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
pub struct Path {
steps: VecDeque<PathStep>,
orig_req: PathRequest,
total_length: Distance,
crossed_so_far: Distance,
uber_turns: VecDeque<UberTurn>,
currently_inside_ut: Option<UberTurn>,
}
impl Path {
pub(crate) fn new(
map: &Map,
steps: Vec<PathStep>,
orig_req: PathRequest,
uber_turns: Vec<UberTurn>,
) -> Path {
if false {
validate_continuity(map, &steps);
}
if false {
validate_restrictions(map, &steps);
}
let mut path = Path {
steps: VecDeque::from(steps),
orig_req,
total_length: Distance::ZERO,
crossed_so_far: Distance::ZERO,
uber_turns: uber_turns.into_iter().collect(),
currently_inside_ut: None,
};
for step in &path.steps {
path.total_length += path.dist_crossed_from_step(map, step);
}
path
}
pub fn dist_crossed_from_step(&self, map: &Map, step: &PathStep) -> Distance {
match step {
PathStep::Lane(l) => {
let lane = map.get_l(*l);
if self.orig_req.start.lane() == lane.id {
lane.length() - self.orig_req.start.dist_along()
} else if self.orig_req.end.lane() == lane.id {
self.orig_req.end.dist_along()
} else {
lane.length()
}
}
PathStep::ContraflowLane(l) => {
let lane = map.get_l(*l);
if self.orig_req.start.lane() == lane.id {
self.orig_req.start.dist_along()
} else if self.orig_req.end.lane() == lane.id {
lane.length() - self.orig_req.end.dist_along()
} else {
lane.length()
}
}
PathStep::Turn(t) => map.get_t(*t).geom.length(),
}
}
pub fn one_step(req: PathRequest, map: &Map) -> Path {
assert_eq!(req.start.lane(), req.end.lane());
Path::new(map, vec![PathStep::Lane(req.start.lane())], req, Vec::new())
}
pub fn get_req(&self) -> &PathRequest {
&self.orig_req
}
pub fn crossed_so_far(&self) -> Distance {
self.crossed_so_far
}
pub fn total_length(&self) -> Distance {
self.total_length
}
pub fn percent_dist_crossed(&self) -> f64 {
if self.total_length == Distance::ZERO {
return 1.0;
}
self.crossed_so_far / self.total_length
}
pub fn is_empty(&self) -> bool {
self.steps.is_empty()
}
pub fn is_last_step(&self) -> bool {
self.steps.len() == 1
}
pub fn isnt_last_step(&self) -> bool {
self.steps.len() > 1
}
pub fn currently_inside_ut(&self) -> &Option<UberTurn> {
&self.currently_inside_ut
}
pub fn about_to_start_ut(&self) -> Option<&UberTurn> {
if self.steps.len() < 2 || self.uber_turns.is_empty() {
return None;
}
if let PathStep::Turn(t) = self.steps[1] {
if self.uber_turns[0].path[0] == t {
return Some(&self.uber_turns[0]);
}
}
None
}
pub fn shift(&mut self, map: &Map) -> PathStep {
let step = self.steps.pop_front().unwrap();
self.crossed_so_far += self.dist_crossed_from_step(map, &step);
if let Some(ref ut) = self.currently_inside_ut {
if step == PathStep::Turn(*ut.path.last().unwrap()) {
self.currently_inside_ut = None;
}
} else if !self.steps.is_empty() && !self.uber_turns.is_empty() {
if self.steps[0] == PathStep::Turn(self.uber_turns[0].path[0]) {
self.currently_inside_ut = Some(self.uber_turns.pop_front().unwrap());
}
}
if self.steps.len() == 1 {
assert!(self.uber_turns.is_empty());
assert!(self.currently_inside_ut.is_none());
}
step
}
pub fn add(&mut self, step: PathStep, map: &Map) {
if let Some(PathStep::Lane(l)) = self.steps.back() {
if *l == self.orig_req.end.lane() {
self.total_length += map.get_l(*l).length() - self.orig_req.end.dist_along();
}
}
self.total_length += step.as_traversable().length(map);
self.steps.push_back(step);
}
pub fn is_upcoming_uber_turn_component(&self, t: TurnID) -> bool {
self.uber_turns
.front()
.map(|ut| ut.path.contains(&t))
.unwrap_or(false)
}
pub fn modify_step(&mut self, idx: usize, step: PathStep, map: &Map) {
assert!(self.currently_inside_ut.is_none());
assert!(idx != 0);
self.total_length -= self.steps[idx].as_traversable().length(map);
if let PathStep::Turn(old_turn) = self.steps[idx] {
for uts in &mut self.uber_turns {
if let Some(turn_idx) = uts.path.iter().position(|i| i == &old_turn) {
if let PathStep::Turn(new_turn) = step {
uts.path[turn_idx] = new_turn;
} else {
panic!("expected turn, but found {:?}", step);
}
}
}
}
self.steps[idx] = step;
self.total_length += self.steps[idx].as_traversable().length(map);
if self.total_length < Distance::ZERO {
panic!(
"modify_step broke total_length, it's now {}",
self.total_length
);
}
}
pub fn current_step(&self) -> PathStep {
self.steps[0]
}
pub fn next_step(&self) -> PathStep {
self.steps[1]
}
pub fn maybe_next_step(&self) -> Option<PathStep> {
if self.is_last_step() {
None
} else {
Some(self.next_step())
}
}
pub fn last_step(&self) -> PathStep {
self.steps[self.steps.len() - 1]
}
pub fn trace(&self, map: &Map) -> Option<PolyLine> {
assert_eq!(
self.steps[0].as_traversable(),
Traversable::Lane(self.orig_req.start.lane())
);
self.trace_from_start(map, self.orig_req.start.dist_along())
}
pub fn trace_from_start(&self, map: &Map, start_dist: Distance) -> Option<PolyLine> {
let orig_end_dist = self.orig_req.end.dist_along();
if self.steps.len() == 1 {
let dist_ahead = if start_dist < orig_end_dist {
orig_end_dist - start_dist
} else {
start_dist - orig_end_dist
};
return self.steps[0]
.exact_slice(map, start_dist, Some(dist_ahead))
.ok();
}
let mut pts_so_far: Option<PolyLine> = None;
if let Ok(pts) = self.steps[0].exact_slice(map, start_dist, None) {
pts_so_far = Some(pts);
}
for i in 1..self.steps.len() {
let dist_ahead = if i == self.steps.len() - 1 {
Some(match self.steps[i] {
PathStep::ContraflowLane(l) => {
map.get_l(l).lane_center_pts.reversed().length() - orig_end_dist
}
_ => orig_end_dist,
})
} else {
None
};
let start_dist_this_step = match self.steps[i] {
PathStep::ContraflowLane(l) => map.get_l(l).lane_center_pts.reversed().length(),
_ => Distance::ZERO,
};
if let Ok(new_pts) = self.steps[i].exact_slice(map, start_dist_this_step, dist_ahead) {
if pts_so_far.is_some() {
match pts_so_far.unwrap().extend(new_pts) {
Ok(new) => {
pts_so_far = Some(new);
}
Err(err) => {
println!("WARNING: Couldn't trace some path: {}", err);
return None;
}
}
} else {
pts_so_far = Some(new_pts);
}
}
}
Some(pts_so_far.unwrap())
}
pub fn get_steps(&self) -> &VecDeque<PathStep> {
&self.steps
}
fn append(&mut self, other: Path, map: &Map) {
assert!(self.currently_inside_ut.is_none());
assert!(other.currently_inside_ut.is_none());
let turn = match (*self.steps.back().unwrap(), other.steps[0]) {
(PathStep::Lane(src), PathStep::Lane(dst)) => TurnID {
parent: map.get_l(src).dst_i,
src,
dst,
},
_ => unreachable!(),
};
self.steps.push_back(PathStep::Turn(turn));
self.total_length += map.get_t(turn).geom.length();
self.steps.extend(other.steps);
self.total_length += other.total_length;
self.uber_turns.extend(other.uber_turns);
}
pub fn estimate_duration(
&self,
map: &Map,
constraints: PathConstraints,
max_speed: Option<Speed>,
) -> Duration {
let mut total = Duration::ZERO;
for step in &self.steps {
let dist = self.dist_crossed_from_step(map, step);
let speed_limit = step.as_traversable().speed_limit(map);
let speed = if constraints == PathConstraints::Pedestrian {
max_speed.unwrap()
} else if let Some(max) = max_speed {
speed_limit.min(max)
} else {
speed_limit
};
total += dist / speed;
}
total
}
}
#[derive(Debug, Serialize, Deserialize, PartialOrd, Ord, EnumSetType)]
pub enum PathConstraints {
Pedestrian,
Car,
Bike,
Bus,
Train,
}
impl PathConstraints {
pub fn all() -> Vec<PathConstraints> {
vec![
PathConstraints::Pedestrian,
PathConstraints::Car,
PathConstraints::Bike,
PathConstraints::Bus,
PathConstraints::Train,
]
}
pub fn from_lt(lt: LaneType) -> PathConstraints {
match lt {
LaneType::Sidewalk | LaneType::Shoulder => PathConstraints::Pedestrian,
LaneType::Driving => PathConstraints::Car,
LaneType::Biking => PathConstraints::Bike,
LaneType::Bus => PathConstraints::Bus,
LaneType::LightRail => PathConstraints::Train,
_ => panic!("PathConstraints::from_lt({:?}) doesn't make sense", lt),
}
}
pub fn can_use(self, l: &Lane, map: &Map) -> bool {
match self {
PathConstraints::Pedestrian => l.is_walkable(),
PathConstraints::Car => l.is_driving(),
PathConstraints::Bike => {
if l.is_biking() {
true
} else if l.is_driving() || (l.is_bus() && map.config.bikes_can_use_bus_lanes) {
let road = map.get_r(l.parent);
!road.osm_tags.is("bicycle", "no")
&& !road
.osm_tags
.is_any(osm::HIGHWAY, vec!["motorway", "motorway_link"])
} else {
false
}
}
PathConstraints::Bus => l.is_driving() || l.is_bus(),
PathConstraints::Train => l.is_light_rail(),
}
}
pub(crate) fn filter_lanes(self, mut choices: Vec<LaneID>, map: &Map) -> Vec<LaneID> {
choices.retain(|l| self.can_use(map.get_l(*l), map));
if self == PathConstraints::Bike {
let just_bike_lanes: Vec<LaneID> = choices
.iter()
.copied()
.filter(|l| map.get_l(*l).is_biking())
.collect();
if !just_bike_lanes.is_empty() {
return just_bike_lanes;
}
}
choices
}
}
#[derive(Debug, PartialEq, Eq, Clone, Serialize, Deserialize)]
pub struct PathRequest {
pub start: Position,
pub end: Position,
pub constraints: PathConstraints,
}
impl fmt::Display for PathRequest {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"PathRequest({} along {}... to {} along {} for {:?})",
self.start.dist_along(),
self.start.lane(),
self.end.dist_along(),
self.end.lane(),
self.constraints,
)
}
}
impl PathRequest {
pub fn between_buildings(
map: &Map,
from: BuildingID,
to: BuildingID,
constraints: PathConstraints,
) -> Option<PathRequest> {
let from = map.get_b(from);
let to = map.get_b(to);
let (start, end) = match constraints {
PathConstraints::Pedestrian => (from.sidewalk_pos, to.sidewalk_pos),
PathConstraints::Bike => (from.biking_connection(map)?.0, to.biking_connection(map)?.0),
PathConstraints::Car => (
from.driving_connection(map)?.0,
to.driving_connection(map)?.0,
),
PathConstraints::Bus | PathConstraints::Train => unimplemented!(),
};
Some(PathRequest {
start,
end,
constraints,
})
}
}
fn validate_continuity(map: &Map, steps: &Vec<PathStep>) {
if steps.is_empty() {
panic!("Empty path");
}
for pair in steps.windows(2) {
let from = match pair[0] {
PathStep::Lane(id) => map.get_l(id).last_pt(),
PathStep::ContraflowLane(id) => map.get_l(id).first_pt(),
PathStep::Turn(id) => map.get_t(id).geom.last_pt(),
};
let to = match pair[1] {
PathStep::Lane(id) => map.get_l(id).first_pt(),
PathStep::ContraflowLane(id) => map.get_l(id).last_pt(),
PathStep::Turn(id) => map.get_t(id).geom.first_pt(),
};
let len = from.dist_to(to);
if len > EPSILON_DIST {
println!("All steps in invalid path:");
for s in steps {
match s {
PathStep::Lane(l) => println!(
" {:?} from {} to {}",
s,
map.get_l(*l).src_i,
map.get_l(*l).dst_i
),
PathStep::ContraflowLane(l) => println!(
" {:?} from {} to {}",
s,
map.get_l(*l).dst_i,
map.get_l(*l).src_i
),
PathStep::Turn(_) => println!(" {:?}", s),
}
}
panic!(
"pathfind() returned path that warps {} from {:?} to {:?}",
len, pair[0], pair[1]
);
}
}
}
fn validate_restrictions(map: &Map, steps: &Vec<PathStep>) {
for triple in steps.windows(5) {
if let (PathStep::Lane(l1), PathStep::Lane(l2), PathStep::Lane(l3)) =
(triple[0], triple[2], triple[4])
{
let from = map.get_parent(l1);
let via = map.get_l(l2).parent;
let to = map.get_l(l3).parent;
for (dont_via, dont_to) in &from.complicated_turn_restrictions {
if via == *dont_via && to == *dont_to {
panic!(
"Some path does illegal uber-turn: {} -> {} -> {}",
l1, l2, l3
);
}
}
}
}
}
#[derive(PartialEq, Serialize, Deserialize)]
pub struct RoutingParams {
pub unprotected_turn_penalty: f64,
pub bike_lane_penalty: f64,
pub bus_lane_penalty: f64,
pub driving_lane_penalty: f64,
}
impl RoutingParams {
pub const fn default() -> RoutingParams {
RoutingParams {
unprotected_turn_penalty: 2.0,
bike_lane_penalty: 1.0,
bus_lane_penalty: 1.1,
driving_lane_penalty: 1.5,
}
}
}