1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
// OSM describes roads as center-lines that intersect. Turn these into road and intersection
// polygons roughly by
// 1) treating the road as a PolyLine with a width, so that it has a left and right edge
// 2) finding the places where the edges of different roads intersect
// 3) "Trimming back" the center lines to avoid the overlap
// 4) Producing a polygon for the intersection itsef

use std::collections::BTreeMap;

use abstutil::{wraparound_get, Timer};
use geom::{Circle, Distance, Line, PolyLine, Polygon, Pt2D, Ring, EPSILON_DIST};

use crate::make::initial::{Intersection, Road};
use crate::osm;
use crate::raw::OriginalRoad;

const DEGENERATE_INTERSECTION_HALF_LENGTH: Distance = Distance::const_meters(2.5);

// Also returns a list of labeled polygons for debugging.
//
// Ideally, the resulting polygon should exist entirely within the thick bands around all original
// roads -- it just carves up part of that space, doesn't reach past it. But that's not always true
// yet.
pub fn intersection_polygon(
    i: &Intersection,
    roads: &mut BTreeMap<OriginalRoad, Road>,
    timer: &mut Timer,
) -> Result<(Polygon, Vec<(String, Polygon)>), String> {
    if i.roads.is_empty() {
        panic!("{} has no roads", i.id);
    }

    // Turn all of the incident roads into two PolyLines (the "forwards" and "backwards" borders of
    // the road, if the roads were oriented to both be incoming to the intersection), both ending
    // at the intersection, and the last segment of the center line.
    // TODO Maybe express the two incoming PolyLines as the "right" and "left"
    let mut lines: Vec<(OriginalRoad, Line, PolyLine, PolyLine)> = Vec::new();
    for id in &i.roads {
        let r = &roads[id];

        let pl = if r.src_i == i.id {
            r.trimmed_center_pts.reversed()
        } else if r.dst_i == i.id {
            r.trimmed_center_pts.clone()
        } else {
            panic!("Incident road {} doesn't have an endpoint at {}", id, i.id);
        };
        let pl_normal = pl.shift_right(r.half_width)?;
        let pl_reverse = pl.shift_left(r.half_width)?;
        lines.push((*id, pl.last_line(), pl_normal, pl_reverse));
    }

    // Sort the polylines by the angle their last segment makes to the common point.
    let intersection_center = lines[0].1.pt2();
    lines.sort_by_key(|(_, l, _, _)| {
        l.pt1().angle_to(intersection_center).normalized_degrees() as i64
    });

    if lines.len() == 1 {
        return deadend(roads, i.id, &lines);
    }
    let rollback = lines
        .iter()
        .map(|(r, _, _, _)| (*r, roads[r].trimmed_center_pts.clone()))
        .collect::<Vec<_>>();
    if let Some(result) = on_off_ramp(roads, i.id, lines.clone()) {
        Ok(result)
    } else {
        for (r, trimmed_center_pts) in rollback {
            roads.get_mut(&r).unwrap().trimmed_center_pts = trimmed_center_pts;
        }
        generalized_trim_back(roads, i.id, &lines, timer)
    }
}

fn generalized_trim_back(
    roads: &mut BTreeMap<OriginalRoad, Road>,
    i: osm::NodeID,
    lines: &Vec<(OriginalRoad, Line, PolyLine, PolyLine)>,
    timer: &mut Timer,
) -> Result<(Polygon, Vec<(String, Polygon)>), String> {
    let mut debug = Vec::new();

    let mut road_lines: Vec<(OriginalRoad, PolyLine)> = Vec::new();
    for (r, _, pl1, pl2) in lines {
        road_lines.push((*r, pl1.clone()));
        road_lines.push((*r, pl2.clone()));

        if false {
            debug.push((
                format!("{} fwd", r.osm_way_id),
                pl1.make_polygons(Distance::meters(1.0)),
            ));
            debug.push((
                format!("{} back", r.osm_way_id),
                pl2.make_polygons(Distance::meters(1.0)),
            ));
        }
    }

    // Intersect every road's boundary lines with all the other lines. Only side effect here is to
    // populate new_road_centers.
    let mut new_road_centers: BTreeMap<OriginalRoad, PolyLine> = BTreeMap::new();
    for (r1, pl1) in &road_lines {
        // road_center ends at the intersection.
        let road_center = if roads[r1].dst_i == i {
            roads[r1].trimmed_center_pts.clone()
        } else {
            roads[r1].trimmed_center_pts.reversed()
        };

        // Always trim back a minimum amount, if possible.
        let mut shortest_center =
            if road_center.length() >= DEGENERATE_INTERSECTION_HALF_LENGTH + 3.0 * EPSILON_DIST {
                road_center.exact_slice(
                    Distance::ZERO,
                    road_center.length() - DEGENERATE_INTERSECTION_HALF_LENGTH,
                )
            } else {
                road_center.clone()
            };

        for (r2, pl2) in &road_lines {
            if r1 == r2 {
                continue;
            }

            // If two roads go between the same intersections, they'll likely hit at the wrong
            // side. Just use the second half of the polyline to circumvent this. But sadly, doing
            // this in general breaks other cases -- sometimes we want to find the collision
            // farther away from the intersection in question.
            let same_endpoints = {
                let ii1 = roads[r1].src_i;
                let ii2 = roads[r1].dst_i;
                let ii3 = roads[r2].src_i;
                let ii4 = roads[r2].dst_i;
                (ii1 == ii3 && ii2 == ii4) || (ii1 == ii4 && ii2 == ii3)
            };
            let (use_pl1, use_pl2): (PolyLine, PolyLine) = if same_endpoints {
                (pl1.second_half(), pl2.second_half())
            } else {
                (pl1.clone(), pl2.clone())
            };

            if use_pl1 == use_pl2 {
                return Err(format!(
                    "{} and {} have overlapping segments. You likely need to fix OSM and make the \
                     two ways meet at exactly one node.",
                    r1, r2
                ));
            }

            // Sometimes two road PLs may hit at multiple points because they're thick and close
            // together. pl1.intersection(pl2) returns the "first" hit from pl1's
            // perspective, so reverse it, ensuring we find the hit closest to the
            // intersection we're working on.
            // TODO I hoped this would subsume the second_half() hack above, but it sadly doesn't.
            if let Some((hit, angle)) = use_pl1.reversed().intersection(&use_pl2) {
                // Find where the perpendicular hits the original road line
                let perp = Line::must_new(
                    hit,
                    hit.project_away(Distance::meters(1.0), angle.rotate_degs(90.0)),
                )
                .infinite();
                // How could something perpendicular to a shifted polyline never hit the original
                // polyline? Also, find the hit closest to the intersection -- this matters for
                // very curvy roads, like highway ramps.
                if let Some(trimmed) = road_center
                    .reversed()
                    .intersection_infinite(&perp)
                    .and_then(|trim_to| road_center.get_slice_ending_at(trim_to))
                {
                    if trimmed.length() < shortest_center.length() {
                        shortest_center = trimmed;
                    }
                } else {
                    timer.warn(format!(
                        "{} and {} hit, but the perpendicular never hit the original center line, \
                         or the trimmed thing is empty",
                        r1, r2
                    ));
                }

                // We could also do the update for r2, but we'll just get to it later.
            }
        }

        let new_center = if roads[r1].dst_i == i {
            shortest_center
        } else {
            shortest_center.reversed()
        };
        if let Some(existing) = new_road_centers.get(r1) {
            if new_center.length() < existing.length() {
                new_road_centers.insert(*r1, new_center);
            }
        } else {
            new_road_centers.insert(*r1, new_center);
        }
    }

    // After doing all the intersection checks, copy over the new centers. Also fill out the
    // intersection polygon's points along the way.
    let mut endpoints: Vec<Pt2D> = Vec::new();
    for idx in 0..lines.len() as isize {
        let (id, _, fwd_pl, back_pl) = wraparound_get(&lines, idx);
        // TODO Ahhh these names are confusing. Adjacent to the fwd_pl, but it's a back pl.
        let (_adj_back_id, _, adj_back_pl, _) = wraparound_get(&lines, idx + 1);
        let (_adj_fwd_id, _, _, adj_fwd_pl) = wraparound_get(&lines, idx - 1);

        roads.get_mut(&id).unwrap().trimmed_center_pts = new_road_centers[&id].clone();
        let r = &roads[&id];

        // Include collisions between polylines of adjacent roads, so the polygon doesn't cover area
        // not originally covered by the thick road bands.
        // Always take the second_half here to handle roads that intersect at multiple points.
        // TODO Should maybe do reversed() to fwd_pl here too. And why not make all the lines
        // passed in point AWAY from the intersection instead?
        if fwd_pl.length() >= EPSILON_DIST * 3.0 && adj_fwd_pl.length() >= EPSILON_DIST * 3.0 {
            if let Some((hit, _)) = fwd_pl.second_half().intersection(&adj_fwd_pl.second_half()) {
                endpoints.push(hit);
            }
        } else {
            timer.warn(format!(
                "Excluding collision between original polylines of {} and something, because \
                 stuff's too short",
                id
            ));
        }

        // Shift those final centers out again to find the main endpoints for the polygon.
        if r.dst_i == i {
            endpoints.push(r.trimmed_center_pts.shift_right(r.half_width)?.last_pt());
            endpoints.push(r.trimmed_center_pts.shift_left(r.half_width)?.last_pt());
        } else {
            endpoints.push(r.trimmed_center_pts.shift_left(r.half_width)?.first_pt());
            endpoints.push(r.trimmed_center_pts.shift_right(r.half_width)?.first_pt());
        }

        if back_pl.length() >= EPSILON_DIST * 3.0 && adj_back_pl.length() >= EPSILON_DIST * 3.0 {
            if let Some((hit, _)) = back_pl
                .second_half()
                .intersection(&adj_back_pl.second_half())
            {
                endpoints.push(hit);
            }
        } else {
            timer.warn(format!(
                "Excluding collision between original polylines of {} and something, because \
                 stuff's too short",
                id
            ));
        }
    }

    // There are bad polygons caused by weird short roads. As a temporary workaround, detect cases
    // where polygons dramatically double back on themselves and force the polygon to proceed
    // around its center.
    let main_result = close_off_polygon(Pt2D::approx_dedupe(endpoints, Distance::meters(0.1)));
    let mut deduped = main_result.clone();
    deduped.pop();
    deduped.sort_by_key(|pt| pt.to_hashable());
    deduped = Pt2D::approx_dedupe(deduped, Distance::meters(0.1));
    let center = Pt2D::center(&deduped);
    deduped.sort_by_key(|pt| pt.angle_to(center).normalized_degrees() as i64);
    deduped = Pt2D::approx_dedupe(deduped, Distance::meters(0.1));
    deduped = close_off_polygon(deduped);
    if main_result.len() == deduped.len() {
        Ok((Ring::must_new(main_result).to_polygon(), debug))
    } else {
        timer.warn(format!(
            "{}'s polygon has weird repeats, forcibly removing points",
            i
        ));
        Ok((Ring::must_new(deduped).to_polygon(), debug))
    }

    // TODO Or always sort points? Helps some cases, hurts other for downtown Seattle.
    /*endpoints.sort_by_key(|pt| pt.to_hashable());
    endpoints = Pt2D::approx_dedupe(endpoints, Distance::meters(0.1));
    let center = Pt2D::center(&endpoints);
    endpoints.sort_by_key(|pt| pt.angle_to(center).normalized_degrees() as i64);
    (close_off_polygon(endpoints), debug)*/
}

fn deadend(
    roads: &mut BTreeMap<OriginalRoad, Road>,
    i: osm::NodeID,
    lines: &Vec<(OriginalRoad, Line, PolyLine, PolyLine)>,
) -> Result<(Polygon, Vec<(String, Polygon)>), String> {
    let len = DEGENERATE_INTERSECTION_HALF_LENGTH * 4.0;

    let (id, _, mut pl_a, mut pl_b) = lines[0].clone();
    // If the lines are too short (usually due to the boundary polygon cutting off border roads too
    // much), just extend them.
    // TODO Not sure why we need +1.5x more, but this looks better. Some math is definitely off
    // somewhere.
    pl_a = pl_a.extend_to_length(len + 1.5 * DEGENERATE_INTERSECTION_HALF_LENGTH);
    pl_b = pl_b.extend_to_length(len + 1.5 * DEGENERATE_INTERSECTION_HALF_LENGTH);

    let r = roads.get_mut(&id).unwrap();
    let len_with_buffer = len + 3.0 * EPSILON_DIST;
    let trimmed = if r.trimmed_center_pts.length() >= len_with_buffer {
        if r.src_i == i {
            r.trimmed_center_pts = r
                .trimmed_center_pts
                .exact_slice(len, r.trimmed_center_pts.length());
        } else {
            r.trimmed_center_pts = r
                .trimmed_center_pts
                .exact_slice(Distance::ZERO, r.trimmed_center_pts.length() - len);
        }
        r.trimmed_center_pts.clone()
    } else {
        if r.src_i == i {
            r.trimmed_center_pts.extend_to_length(len_with_buffer)
        } else {
            r.trimmed_center_pts
                .reversed()
                .extend_to_length(len_with_buffer)
                .reversed()
        }
    };

    // After trimming the center points, the two sides of the road may be at different
    // points, so shift the center out again to find the endpoints.
    // TODO Refactor with generalized_trim_back.
    let mut endpts = vec![pl_b.last_pt(), pl_a.last_pt()];
    if r.dst_i == i {
        endpts.push(trimmed.shift_right(r.half_width)?.last_pt());
        endpts.push(trimmed.shift_left(r.half_width)?.last_pt());
    } else {
        endpts.push(trimmed.shift_left(r.half_width)?.first_pt());
        endpts.push(trimmed.shift_right(r.half_width)?.first_pt());
    }

    endpts.dedup();
    Ok((
        Ring::must_new(close_off_polygon(endpts)).to_polygon(),
        Vec::new(),
    ))
}

fn close_off_polygon(mut pts: Vec<Pt2D>) -> Vec<Pt2D> {
    if pts.last().unwrap().approx_eq(pts[0], Distance::meters(0.1)) {
        pts.pop();
    }
    pts.push(pts[0]);
    pts
}

// The lines all end at the intersection
struct Piece {
    id: OriginalRoad,
    left: PolyLine,
    center: PolyLine,
    right: PolyLine,
}

// The normal generalized_trim_back approach produces huge intersections when 3 roads meet at
// certain angles. It usually happens for highway on/off ramps. Try something different here. In
// lieu of proper docs, see https://twitter.com/CarlinoDustin/status/1290799086036111360.
fn on_off_ramp(
    roads: &mut BTreeMap<OriginalRoad, Road>,
    i: osm::NodeID,
    lines: Vec<(OriginalRoad, Line, PolyLine, PolyLine)>,
) -> Option<(Polygon, Vec<(String, Polygon)>)> {
    if lines.len() != 3 {
        return None;
    }
    // TODO Really this should apply based on some geometric consideration (one of the endpoints
    // totally inside the other thick road's polygon), but for the moment, this is an OK filter.
    //
    // Example candidate: https://www.openstreetmap.org/node/32177767
    let mut ok = false;
    for (r, _, _, _) in &lines {
        if roads[r].osm_tags.is_any(
            osm::HIGHWAY,
            vec![
                "motorway",
                "motorway_link",
                "primary_link",
                "secondary_link",
                "tertiary_link",
                "trunk_link",
            ],
        ) {
            ok = true;
            break;
        }
    }
    if !ok {
        return None;
    }

    let mut debug = Vec::new();

    let mut pieces = Vec::new();
    // TODO Use this abstraction for all the code here?
    for (id, _, right, left) in lines {
        let r = &roads[&id];
        let center = if r.dst_i == i {
            r.trimmed_center_pts.clone()
        } else {
            r.trimmed_center_pts.reversed()
        };
        pieces.push(Piece {
            id,
            left,
            center,
            right,
        });
    }

    // Break ties by preferring the outbound roads for thin
    pieces.sort_by_key(|r| (roads[&r.id].half_width, r.id.i2 == i));
    let thick1 = pieces.pop().unwrap();
    let thick2 = pieces.pop().unwrap();
    let thin = pieces.pop().unwrap();

    // Find where the thin hits the thick farthest along.
    // (trimmed thin center, trimmed thick center, the thick road we hit)
    let mut best_hit: Option<(PolyLine, PolyLine, OriginalRoad)> = None;
    for thin_pl in vec![&thin.left, &thin.right] {
        for thick in vec![&thick1, &thick2] {
            for thick_pl in vec![&thick.left, &thick.right] {
                if thin_pl == thick_pl {
                    // How? Just bail.
                    return None;
                }
                if let Some((hit, angle)) = thin_pl.intersection(thick_pl) {
                    // Find where the perpendicular hits the original road line
                    // TODO Refactor something to go from a hit+angle on a left/right to a trimmed
                    // center.
                    let perp = Line::must_new(
                        hit,
                        hit.project_away(Distance::meters(1.0), angle.rotate_degs(90.0)),
                    )
                    .infinite();
                    let trimmed_thin = thin
                        .center
                        .reversed()
                        .intersection_infinite(&perp)
                        .and_then(|trim_to| thin.center.get_slice_ending_at(trim_to))?;

                    // Do the same for the thick road
                    let (_, angle) = thick_pl.dist_along_of_point(hit).unwrap();
                    let perp = Line::must_new(
                        hit,
                        hit.project_away(Distance::meters(1.0), angle.rotate_degs(90.0)),
                    )
                    .infinite();
                    let trimmed_thick = thick
                        .center
                        .reversed()
                        .intersection_infinite(&perp)
                        .and_then(|trim_to| thick.center.get_slice_ending_at(trim_to))?;

                    if false {
                        debug.push((
                            format!("1"),
                            Circle::new(hit, Distance::meters(3.0)).to_polygon(),
                        ));
                        debug.push((
                            format!("2"),
                            Circle::new(trimmed_thin.last_pt(), Distance::meters(3.0)).to_polygon(),
                        ));
                        debug.push((
                            format!("3"),
                            Circle::new(trimmed_thick.last_pt(), Distance::meters(3.0))
                                .to_polygon(),
                        ));
                    }
                    if best_hit
                        .as_ref()
                        .map(|(pl, _, _)| trimmed_thin.length() < pl.length())
                        .unwrap_or(true)
                    {
                        best_hit = Some((trimmed_thin, trimmed_thick, thick.id));
                    }
                }
            }
        }
    }

    {
        // Trim the thin
        let (mut trimmed_thin, mut trimmed_thick, thick_id) = best_hit?;
        if roads[&thin.id].dst_i != i {
            trimmed_thin = trimmed_thin.reversed();
        }
        roads.get_mut(&thin.id).unwrap().trimmed_center_pts = trimmed_thin;

        // Trim the thick
        // extra ends at the intersection
        let extra = if roads[&thick_id].dst_i == i {
            roads[&thick_id]
                .trimmed_center_pts
                .get_slice_starting_at(trimmed_thick.last_pt())?
        } else {
            trimmed_thick = trimmed_thick.reversed();
            roads[&thick_id]
                .trimmed_center_pts
                .get_slice_ending_at(trimmed_thick.first_pt())?
                .reversed()
        };
        roads.get_mut(&thick_id).unwrap().trimmed_center_pts = trimmed_thick;
        // Give the merge point some length
        if extra.length() <= 2.0 * DEGENERATE_INTERSECTION_HALF_LENGTH + 3.0 * EPSILON_DIST {
            return None;
        }
        let extra = extra.exact_slice(2.0 * DEGENERATE_INTERSECTION_HALF_LENGTH, extra.length());

        // Now the crazy part -- take the other thick, and LENGTHEN it
        let other = roads
            .get_mut(if thick1.id == thick_id {
                &thick2.id
            } else {
                &thick1.id
            })
            .unwrap();
        if other.dst_i == i {
            other.trimmed_center_pts = other
                .trimmed_center_pts
                .clone()
                .extend(extra.reversed())
                .ok()?;
        } else {
            other.trimmed_center_pts = extra.extend(other.trimmed_center_pts.clone()).ok()?;
        }
    }

    // Now build the actual polygon
    let mut endpoints = Vec::new();
    for id in vec![thin.id, thick1.id, thick2.id] {
        let r = &roads[&id];
        // Shift those final centers out again to find the main endpoints for the polygon.
        if r.dst_i == i {
            endpoints.push(
                r.trimmed_center_pts
                    .shift_right(r.half_width)
                    .ok()?
                    .last_pt(),
            );
            endpoints.push(
                r.trimmed_center_pts
                    .shift_left(r.half_width)
                    .ok()?
                    .last_pt(),
            );
        } else {
            endpoints.push(
                r.trimmed_center_pts
                    .shift_left(r.half_width)
                    .ok()?
                    .first_pt(),
            );
            endpoints.push(
                r.trimmed_center_pts
                    .shift_right(r.half_width)
                    .ok()?
                    .first_pt(),
            );
        }
    }
    /*for (idx, pt) in endpoints.iter().enumerate() {
        debug.push((format!("{}", idx), Circle::new(*pt, Distance::meters(2.0)).to_polygon()));
    }*/

    endpoints.sort_by_key(|pt| pt.to_hashable());
    endpoints.dedup();
    let center = Pt2D::center(&endpoints);
    endpoints.sort_by_key(|pt| pt.angle_to(center).normalized_degrees() as i64);
    endpoints.dedup();
    Some((
        Ring::must_new(close_off_polygon(endpoints)).to_polygon(),
        debug,
    ))

    //let dummy = Circle::new(orig_lines[0].3.last_pt(), Distance::meters(3.0)).to_polygon();
    //Some((close_off_polygon(dummy.into_points()), debug))
}